Развитие представлений о природе тепловых явлений и свойств макросистем
| Категория реферата: Рефераты по науке и технике
| Теги реферата: информационные технологии реферат, маркетинг реферат
| Добавил(а) на сайт: Petra.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
Тепловые процессы связаны со строением вещества и его внутренней структурой. Например, нагревание кусочка парафина на несколько десятков градусов превращает его в жидкость, а такое же нагревание металлического стержня заметно не влияет на него. Такое различное действие нагревания связано с различием во внутреннем строении этих веществ. Поэтому исследование тепловых явлений можно использовать для выяснения общей картины строения вещества. И, наоборот, определенные представления о строении вещества помогают понять физическую сущность тепловых явлений, дать им глубокое наглядное истолкование.
Свойства и поведение макросистем, начиная от разреженных газов верхних слоев атмосферы и кончая твердыми телами на Земле, а также сверхтвердыми ядрами планет и звезд, определяются движением и взаимодействием друг с другом частиц, из которых состоят все тела: молекул, атомов, элементарных частиц.
Непосредственным доказательством существования хаотического движения молекул служит броуновское движение, которое заключается в том, что весьма малые (видимые только в микроскоп) взвешенные в жидкости частицы всегда находятся в состоянии непрерывного, беспорядочного движения, не зависящего от внешних причин, и оказывается проявлением внутреннего движения, совершаемого под влиянием беспорядочных ударов молекул.
Количественным воплощением молекулярно-кинетических представлений служат опытные газовые законы (Бойля— Мариотта, Гей-Люссака, Авогадро, Дальтона), уравнение Клапейрона—Менделеева (уравнение состояния), основное уравнение кинетической теории идеальных газов, закон Максвелла для распределения молекул и др.
Первое положение молекулярно-кинетических представлений — любое тело состоит из большого числа весьма малых частиц-молекул — доказано многочисленными опытами, одновременно подтвердившими реальное существование молекул и атомов.
Уравнение состояния идеального газа.
Количественным воплощением молекулярно-кинетических представлений служат опытные газовые законы (Бойля—Мариотта, Гей-Люссака, Авогадро, Дальтона), уравнение Клапейрона—Менделеева (уравнение состояния), основное уравнение кинетической теории идеальных газов, закон Максвелла для распределения молекул и др.
Из основного уравнения молекулярно-кинетической теории вытекает важный вывод: средняя кинетическая энергия поступательного движения одной молекулы идеального газа прямо пропорциональна его термодинамической температуре и зависит только от нее:
Е= (3/2)кТ
где k — постоянная Больцмана; Т — температура.
Из данного уравнения следует, что при Т = 0 средняя кинетическая энергия равна нулю, т. е. при абсолютном нуле прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Термодинамическая температура — мера кинетической энергии поступательного движения идеального газа, а приведенная формула раскрывает молекулярно-кинетическое толкование температуры.
В молекулярно-кинетической теории пользуются идеализированной моделью идеального газа, согласно которой:
• собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;
• между молекулами газа отсутствуют силы взаимодействия;
• столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.
Модель идеального газа можно использовать при изучении реальных газов, так как в условиях, близких к нормальным (например, кислород и гелий), а также при низких давлениях и высоких температурах они близки по своим свойствам к идеальному газу. Кроме того, внеся поправки, учитывающие собственный объем молекул газа и действующие молекулярные силы, можно перейти к теории реальных газов, из которой следует уравнение Ван-дер-Ваальса, описывающее состояние реального газа.
Идеальные газы подчиняются уравнению состояния Менделеева- Клапейрона:
pV=(m/m)RТ,
где p — давление газа ; V — его объем; m — масса газа; m — молярная масса; R — универсальная газовая постоянная (R = 8,31 Дж/ моль К).
Другое уровнение:
p=nkT,
где k=R / Nа – постоянная Больцмана; Nа – число Авогадро (Nа= 6,02 1023 моль-1;
k= 1,38 *10-23 Дж/К), n – число молекул в единице объёма, Т – температура.
Энергия взаимодействия молекул и агрегатные состояния. Понятие о фазовых переходах.
Большую часть энергии человек использует в виде тепла. Теплота – основа энергии.
Рекомендуем скачать другие рефераты по теме: онегин сочинение, реферат язык.
Категории:
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата