Системы персонального вызова
| Категория реферата: Рефераты по науке и технике
| Теги реферата: тест класс, культурология как наука
| Добавил(а) на сайт: Янченко.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
1) без сердечника - один или множество витков провода имеющих форму круга или прямоугольника (рис. 1.3а);
2) с сердечником - провод наматываеся на материал с высокой магнитной проницаемостью (рис. 1.3б).
Использование сердечников значительно увеличивает магнитный поток, пронизывающий рамку, и обеспечивает тем самым более высокую чувствительность преобразователя. При одинаковой чувствительности по напряженности магнитного поля рамки с сердечником обычно существенно меньше, чем рамки без сердечника.
Как известно, ЭДС индуцируемая магнитным полем в катушке равна
e = - -- cos (1)
где Ф= SH sin( t+ ) - магнитный поток, пронизывающий витки
рамки;
- магнитная проницаемость сердечника;
S - площадь поперечного сечения сердечника или витка воз душной рамки.
При приеме высокочастотных полей обычно пользуются понятием действующей высоты рамки h , определяющей по существу ее чувствительность в режиме холостого хода к электрической составляющей электромагнитного поля.
Как и любая катушка индукционная рамка имеет распределенную межвитковую емкость обмотки С . Величина ее зависит от многих факторов и не поддается расчету. Экспериментально С можно найти определяя резонансные частоты рамки f при нескольких значениях внешней емкости Свн и используя формулу Томпсона
Индукционные датчики магнитного поля являются одними из наиболее чувствительных датчиков. С их помощью можно регистрировать поля напряженностью от 10Е-14 А/м в диапазоне до нескольких МГц.
1.2.2. Датчики с насыщенным сердечником.
Датчики этого типа также называют магнитомодуляционными и феррозондами. В основном они применяются для измерения постоянных магнитных полей, но эти же датчики можно использовать и для измерения напряженности переменных магнитных полей низких частот (Fmax=10 КГц).
Датчик с насыщенным сердечником представляет собой устройство состоящее из одного или двух сердечников из высокопроницаемого магнитомягкого материала с распределенными по длине обмотками.
Принцип действия основан на периодическом изменении проницаемости сердечников с помощью вспомогательного переменного магнитного поля. Обмотка возбуждения питается от специального источника переменного тока. Величина тока выбирается такой, что создаваемое им поле в определенную часть периода обеспечивает в сердечнике состояние насыщения. При этом магнитные линии измеряемого поля "выталкиваются" из сердечника, пересекая при этом выходную катушку и в ней индуцируется Э.Д.С., которая зависит от величины измеряемого поля. Обычно на выходе стоит фильтр, выделяющий вторую гармонику частоты возбуждения. Так как при напряженности поля равном нулю она также равна нулю, то по ее амплитуде судят о величине измеряемого магнитного поля. Нижний предел измеряемых магнитных полей датчика с насыщенным сердечником равен 10Е-12 А/м.
1.2.3. Магнитометр с оптической накачкой.
Магнитометр с оптической накачкой основан на эффекте Зеемана. В 1896 году голландский физик П.Зееман показал,что некоторые из характеристических спектральных линий атомов расщепляются, когда атомы помещены в магнитное поле; одна спектральная линия расщепляется в группу линий с несколькими различающимися длинами волн. Особенно этот эффект выражен в щелочных элементах, например, в цезии.
В магнитометре с оптической накачкой используются 3 энергетических состояния, возможных для единственного валентного электрона цезия: 2 низких близкорасположенных состояния и одно состояние с более высокой энергией. Разница энергий между более низкими состояниями соответствует радиочастотным спектральным линиям, а переход между одним из более низких состояний и более высоким состоянием соответствует спектральной линии в оптической области.
Рассмотрим пары цезия при оптической накачке света с круговой поляризацией. Количество света, поглощаемое парами, измеряется при помощи фотодетектора. Первоначально некоторые электроны в парах будут находиться в одном из низких энергетических состояний и некоторые - в другом. Когда атомы поглощают фотоны света с круговой поляризацией, их угловой момент обязательно меняется на единицу. Таким образом, электроны, находящиеся в энергетическом состоянии, отличающемся от более высокого состояния на единицу углового момента, будут поглощать фотоны и переходить в более высокое состояние, а находящиеся в энергетическом состоянии с таким же угловым моментом, как и в более высоком состоянии, - не будут. Поскольку некоторые фотоны поглощаются, сила света уменьшится. Электрон, находящийся в более высоком состоянии, почти немедленно переходит в одно из более низких состояний. Каждый раз, когда электрон совершает этот переход, существует некоторая вероятность того,что он перейдет в состояние, в котором невозможно поглощение света. При достаточном времени почти все электроны перейдут в такое состояние. Пар, про который тогда говорят, что произошла его полная накачка, относительно прозрачен для света.
Если затем параллельно лучу света наложить ВЧ-поле, то оно перебросит электроны, изменяя при этом их спиновый угловой момент. Фактически РЧ-поле заставляет электроны перебрасываться из одного более низкого состояния в другое, "расстраивая" оптическую накачку. Как следствие, пар вновь начинает поглощать свет. Радиочастотные и оптические эффекты объединяются, давая особенно острый резонанс, и именно на этом резонансном явлении работает магнитометр с оптической накачкой.
Энергия, требуемая для опрокидывания спина электрона, и, следовательно, частота ВЧ-поля, зависят от силы магнитного поля. В магнитометре контур обратной связи управляет радиочастотой для поддержания минимального пропускания света. Таким образом, частота как бы служит мерой магнитного поля. Магнитометр с оптической накачкой измеряет общее магнитное поле любой ориентации в отличие от большинства магнитометров, которые измеряют только составляющую магнитного поля, лежащую вдоль чувствительной оси.
Чувствительность и динамический диапазон этого магнитометра подобно большинству магнитометров определяется регистрирующей электроникой. Типичные значения чувствительности прибора имеют предел от 10Е-14 до 10Е-6 А/м.
Датчик имеет большие габариты и высокое потребление мощности (несколько ватт). Конструкция оптического магнитометра показана на рис. 1.5.
1.2.4. Ядерный прецессионный магнитометр.
В ядерном прецессионном магнитометре используется реакция ядер атомов в жидких углеводородах, например бензоле, на воздействие магнитного поля. Протоны в ядрах атомов можно рассматривать как малые магнитные диполи; поскольку они вращаются и обладают электрическим зарядом, у них есть небольшой магнитный момент, подобный в некоторых отношениях угловому моменту вращающегося гироскопа. С помощью однородного магнитного поля, создаваемого при прохождении тока через катушку, протоны в жидкости могут быть временно выстроены в ряд. Когда поляризационный ток выключается, происходит прецессия протонов относительно окружающего магнитного поля. Ось спина протона, не выстроенного постоянным магнитным полем, подобно оси гироскопа вне линии гравитационного поля, проходит по окружности относительно линии, параллельной полю. Скорость прохождения, называемая частотой прецессии, зависит от силы измеряемого магнитного поля. Прецессирующие протоны генерируют в катушке сигнал, частота которого пропорциональна величине магнитного поля. Конструкция этого магнитометра показана на рис. 1.6.
Ядерный прецессионный магнитометр имеет диапазон чувствительности от 10Е-13 до 10Е-4 А/м, а их частотный диапазон ограничен стробирующей частотой жидкого водорода.
1.2.5. СКВИД-датчик.
Сверхпроводящий квантовый интерференционный датчик (СКВИД) является самым чувствительным датчиком магнитного поля. Это устройство основано на взаимодействии электрических токов и магнитных колебаний, наблюдаемых при охлаждении материала ниже температуры перехода в сверхпроводящее состояние. Конструкция датчика приведена на рис. 1.7.
Если линии магнитного поля проходят через кольцо из сверхпроводящего материала то в нем индуцируется ток. При отсутствии возмущений ток будет протекать сколько угодно долго. Величина индуцированного тока является весьма чувствительным индикатором плотности потока поля. Кольцо может реагировать на изменение поля, соответствующее долям одной квантовой единицы магнитного потока. При наличии в кольце тонкого перехода (переход Джозефсона) в нем наблюдаются колебания тока. Кольцо соединяют с ВЧ схемой, которая подает известное поле смещения и детектирует выходной сигнал. При взаимодействии двух двух волн образуется итерференционные полосы, подобно световым волнам. Подсчет полос позволяет с высокой точностью определить величину магнитного поля.
Кольцо изготавливают из свинца или ниобия диаметром несколько миллиметров. Для увеличения чувствительности его иногда включают в более крупную катушку. Диапазон измеряемых полей равен от 10Е-16 до 10Е-10 А/м.
1.2.6. Магниторезисторы.
Магниторезисторами называют полупроводниковые приборы, сопротивление которых меняется в магнитном поле. Поскольку эффект магнитосопротивления максимален в полупроводнике не ограниченом в направлении перпендикулярному току, то в реальных магниторезисторах стремятся максимально приблизится к этому условию. Наилучшим типом неограниченного образца является диск Карбино (см. рис. 1.8а).
Отклонение тока в таком образце при отсутствии магнитного поля нет и он направлен строго по радиусу. При наличии поля путь носителей заряда удлиняется и сопротивление увеличивается. Другой структурой магниторезистора является пластина ширина которой много больше длины (рис. 1.8б). Эти две структуры обладают наибольшим относительным изменением сопротивления в магнитном поле. Однако их существенным недостатком является малое абсолютное сопротивление при B=0, что обусловлено их конфигурацией. Для увеличения R применяют последовательное соединение резисторов. Например, в случае пластины используется одна длинная пластина из полупроводника с нанесенными металлическими полосками, делящими кристалл на области длина которых меньше ширины. Таким образом, каждая область между полосками представляет собой отдельный магниторезистор.
Магниторезисторы обладают довольно большой чувствительностью. Она лежит в пределах от 10Е-13 до 10Е-4 А/м. Наибольшей чувствительностью обладают магниторезисторы изготовленные из InSb-NiSb.
1.2.7. Магнитодиоды.
Магнитодиод представляет собой полупроводниковый прибор с p-n переходом и невыпрямляющими контактами, между которыми находится область высокоомного полупроводника.
Действие прибора основано на магнитодиодном эффекте. В "длинных" диодах (d/L >> 1, где d - длина базы, L - эффективнная длина дифузионного смещения ) распределение носителей, а следовательно сопротивление диода (базы) определяется длиной L Уменьшение L вызывает понижение концентрации неравновесных носителей в базе, т. е. повышение ее сопротивления. Это вызывает увеличение падения напряжения на базе и уменьшение на p-n переходе (при U=const). Уменьшение падения напряжения на p-n переходе вызывает снижение инжекционного тока и следовательно дальнейшее увеличение сопротивление базы. Длину L можно изменять воздействуя на диод магнитным полем. Оно приводит к закручиванию движущихся носителей и их подвижность уменьшается, следовательно уменьшается и L. Одновременно удлиняются линии тока, т. е. эффективная толщина базы растет. Это и есть магнитодиодный эффект.
Нашей промышленностью выпускается несколько типов магнитодиодов. Их чувствительность лежит в пределах 10Е-9 до 10Е-2 А/м. Существуют также магнитодиоды способные определять не только напряженность магнитного поля но и его направление.
1.2.8. Магнитотранзисторы.
Существует множество типов магнитотранзисторов. Они могут быть и биполярными, и полевыми, и однопереходными. Но наибольшей чувствительностью обладают двухколекторные магнитотранзисторы (ДМТ). Структурная схема и способ включения ДМТ показаны на рис. 1.10.
ДМТ - это четырех электродные полуроводниковые приборы планарной или торцевой топологии. Инжектирующий контакт, эмиттер, расположен между симметричными коллекторами. Четвертый контакт - базовый. Магнитное поле в зависимости от направления отклоняет инжектированные носители к одному из коллекторов и изменяет распределение токов между коллекторами. Разность токов коллекторов и определяет величину измеряемого магнитного поля. Она пропорциональна индукции магнитного поля, а знак показывает его направление. В области слабых полей ДМТ обладает очень высокой магниточувствительностью и хорошей линейностью ампер-тесловой характеристики. Они используются в аппаратуре требующей измерения индукции и знака магнитного поля, например, в магнитных компасах. В основном используются кремний и германий. Чувствительность магнитотранзисторов лежит в пределах 10Е-8 до 10Е-4 А/м.
1.2.9. Датчик на эффекте Холла.
Рассмотрим пластину полупроводника р-типа через которую протекает ток, направленный перпендикулярно внешнему магнитному полю. Сила Лоренца отклоняет дырки к верхней грани пластины, в следствии чего их концентрация там увеличивается, а у нижней грани уменьшается. В результате пространственного разделения зарядов возникает электрическое поле, направленное от верхней грани к нижней. Это поле препятствует разделению зарядов и, как только создаваемая им сила станет равной силе Лоренца, дальнейшее разделение зарядов прекратится.
Разность потенциалов между верхней и нижней гранями образца равна :
V = E*a = v*B*a,
где а - ширина образца в направлении протекания тока, B напряженность магнитного поля, v - скорость носителей. Наиболее существенное достоинство датчика Холла при измерении им напряженности магнитного поля - это линейность измеряемого напряжения от индукции магнитного поля. Датчики работают в диапазоне от 10Е-5 до 1 А/м.
Датчики Холла изготавливают либо из тонких полупроводниковых пластин, либо из напыленных тонких пленок. Для изготовления используются полупроводники с высокой подвижностью носителей заряда.
1.2.10. Волоконно-оптический магнитомер.
Рекомендуем скачать другие рефераты по теме: антикризисное управление, реферат россия скачать.
Категории:
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата