Возникновение биологической информации
| Категория реферата: Рефераты по науке и технике
| Теги реферата: архитектура реферат, реферат япония
| Добавил(а) на сайт: Jefirov.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Таким образом, важность второго этапа состоит в том, что благодаря самоорганизации в каплях, подобных клетке (коацерватах, микросферах и маригранах), создаются условия для спонтанного образования биополимеров. В этой связи можно сказать, что образование "клетки", точнее ее аналога, предшествовало возникновению жизни.
Третий этап - образование информационной системы. Обсудим свойства каплеподобных образований, состоящих из случайно связанных полинуклеотидов и полипептидов как информационных систем. При этом основное внимание обратим на свойства полинуклеотидов как хранителей генетической информации.
Молекулярные аспекты механизма авторепродукции. Как упоминалось, комплементарная авторепродукция необходима для запоминания биологической информации. Хранителем информации является биспираль ДНК, и, следовательно, речь идет о репродукции ДНК. Для ускорения репликации и предохранения ДНК от гидролиза необходим белок-фермент с такими функциями, называемый репликазой.
Ясно, что первичный процесс репликации был проще современного. Тем не менее, для того чтобы представить молекулярный механизм первичной репликации, целесообразно рассмотреть современную картину, включая свойства белка-репликазы и его биосинтез.
Расчеты вероятности являются основным камнем преткновения в вопросе о происхождении жизни. Именно эти, абсурдно малые, величины вероятности лежат в основе утверждения о невозможности понять и описать возникновение жизни в рамках современной науки.
Для преодоления трудности достаточно отказаться от буквального понимания слова "кодирует" и принять, что молекула ДНК в первичном гиперцикле способствовала образованию белка-репликазы (катализировала его синтез) без участия кода.
Иными словами, первичная последовательность ДНК начинает играть существенную роль в определении первичной последовательности белка. Именно благодаря адаптерам ускоряется формирование той белковой последовательности, которая соответствует функциональной форме белка. Таким образом, существует переходная стадия, в которой совмещены процессы синтеза белка без кода и процессы кодирования, сходные с современным биосинтезом. Последнее позволяет при изменении (мутации) последовательности ДНК (но без изменения набора адаптеров) синтезировать белки с измененной последовательностью аминокислот и, следовательно, с измененной формой и функцией. Иными словами, появляется возможность дальнейшей биологической эволюции.
В рамках данного варианта проблема малой вероятности образования первичного гиперцикла не возникает. Однако встает другой вопрос: почему в современной биосфере господствует один вариант кода и отсутствуют другие? Обсуждаются два ответа на этот вопрос.
Первая гипотеза сводится к тому, что среди разных вариантов кода имелся наилучший, который и был "отобран" в последующей эволюции.
Во второй гипотезе принимается, что все варианты кода были равноправны, но в результате взаимодействия между разными популяциями был выбран (а не отобран) единый код.
Вернемся к вопросу о синтезе белка в первичном гиперцикле. Смысл слова "кодирование" в рассматриваемом случае существенно иной, чем в современном биосинтезе. В обычном понимании никакого кодирования вообще не происходит. Главную роль играет форма ДНК, полинуклеотид функционирует как гетерогенный катализатор. При этом фиксируется форма белка-репликазы, последний в силу механизма образования принимает комплементарную форму, т.е. представляет собой слепок с ДНК.
Последний этап - выбор единого кода - имел место уже после образования нескольких различных популяций гиперциклов с различными вариантами кода.
Поэтому антагонистическое взаимодействие в данном случае заведомо сильнее, чем не антагонистическое. Выше было показано, что в конце всего процесса образуется "чистое" состояние, т.е. выбирается один вариант кода. Это имеет место и в несимметричной модели, т.е. в случае, когда варианты не одинаковы. При этом побеждает вовсе не "наилучшая" популяция, а та, которая по воле случая оказалась более многочисленной.
Иными словами, происходит не отбор наилучшего варианта (в традиционном, дарвиновском понимании), а выбор одного из практически равноправных, который вытесняет остальных.
Здесь уместно сделать ряд замечаний. Можно сказать, что белок, образованный по схеме гетерогенного катализа, является грубым слепком с молекулы ДНК. Первичные адаптеры тоже являются "слепками" (уже не грубыми), с одной стороны, с участка ДНК (кодона или антикодона), а с другой - с прилегающего блока аминокислот.
Эволюцию биосинтеза белка можно сравнить с эволюцией письменности.
Древняя форма письма - иероглифы. В древности каждый иероглиф представлял собой рисунок объекта, можно сказать "слепок" с него. Так, дом изображался в виде шалаша-треугольника, а бык - в виде морды с рогами (алеф). При этом не было необходимости использовать алфавит (т.е. код). Иероглифическому этапу соответствует схема первичного синтеза адаптеров.
Затем некоторые иероглифы потеряли свойство прямого соответствия целому объекту (при этом существенно упростились), но приобрели новую функцию - буквы. Буква является частью слова - ее осколком, и сама по себе ничего не значит. Она приобретает смысл в сочетании с другими буквами в соответствии с алфавитом (кодом). Алфавитная письменность появилась с увеличением количества передаваемой информации. Смысл этого прост, число сочетаний даже небольшого количества символов факториально велико по сравнению с количеством символов. Переход от иероглифической письменности к алфавитной был постепенным. Сперва к иероглифу, соответствующему предмету (или действию) добавляли более простой символ, уточняющий смысл первого. Такая смешанная письменность, не нарушая функций иероглифов, расширила возможности письменной передачи информации. При этом иероглифы постепенно вытеснялись буквами. Подчеркнем, это происходило именно постепенно, поскольку превращение каждого иероглифа в букву не препятствовало восприятию всего текста. При этом каждый из участников, как создатели знака, так и реципиенты, постепенно, путем взаимного обучения, вырабатывали условия кода, т.е. алфавит. Схема промежуточного биосинтеза белка соответствует смешанной письменности, где адаптеры, с одной стороны, являются осколками чехла (иероглифы), а с другой - уже буквами.
Отметим особенность биологической эволюции. В рассматриваемый период гиперцикл включал только один белок - репликазу, с единственной функцией. Даже в таких простейших популяциях был выработан (выбран) единый код. Можно сказать, что "В начале было слово", оно имело один смысл - комплиментарную репродукцию, т.е. жизнь. Алфавит был выработан на основе единого слова.
Возникновение биологического разнообразия и проблема темпов биологической эволюции. В современной биосфере имеется большое разнообразие видов, которое появилось в результате эволюции. Обычно его изображают в виде схемы, именуемой эволюционным деревом.
Новые виды находят себе новые источники питания, осваивают новые экологические ниши и приспосабливаются к ним. При этом выживают наиболее приспособленные, а менее приспособленные вымирают. В результате вариабельность внутри каждого вида уменьшается и распределения сужаются.
Эта стадия называется конвергентной. В молекулярном аспекте появление нового вида означает появление белков с новой функцией и соответствующих этим белкам новых генов. Обсуждавшийся выше процесс образования гиперциклов можно рассматривать как возникновение вида. Образование многих гиперциклов с различными вариантами кода соответствует дивергентной стадии, а выбор одного варианта кода - конвергентной. Сейчас мы рассмотрим этапы дальнейшей эволюции, акцентируя внимание на наиболее острых проблемах.
Перед этим сделаем ряд замечаний.
1. Разнообразие возникает, когда исходные ресурсы (мононуклеотиды и аминокислоты) исчерпываются и необходимы новые белки с новыми функциями. Например, белки, разлагающие полинуклеотиды и полипептиды умерших особей. Другой пример - белки, способные усваивать сахара (углеводы), и липиды, созданные в предбиологический период.
Каждый из организмов, обладающий белком с новой (катаболической) функцией, осваивает свою экологическую нишу. Процесс освоения новых (разных) ниш за счет синтеза новых (разных) белков является дивергентным.
Рекомендуем скачать другие рефераты по теме: реферат менеджмент, инновационный менеджмент.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата