Введение в физику черных дыр
| Категория реферата: Рефераты по науке и технике
| Теги реферата: диплом управление предприятием, реферат по дисциплине
| Добавил(а) на сайт: Флорентина.
1 2 3 | Следующая страница реферата
ВВЕДЕНИЕ В ФИЗИКУ ЧЕРНЫХ ДЫР
СОДЕРЖАНИЕОсобенности сил тяготения
Что такое черная дыра?
Краткие сведения об общей теории относительности Эйнштейна
Сферически-симметричный гравитационный коллапс
Вращающиеся и заряженные черные дыры
Общие свойства черных дыр
Эволюция звезд и черные дыры
Как обнаружить черную дыру?
Энергетика черных дыр
Квантовые эффекты в черных дырах
Первичные черные дыры
Черные дыры, термодинамика, информация
Что внутри черной дыры?
Вместо заключения: проблемы и гипотезы
Литература
Одним из наиболее удивительных предсказаний теории тяготения Эйнштейна является возможность существования черных дыр — компактных массивных объектов, обладающих столь сильным гравитационным полем, что никакие физические тела, никакие сигналы не могут вырваться из них наружу. И хотя черные дыры с полной достоверностью пока еще не открыты, имеется немало причин, по которым они привлекают к себе в последние годы пристальное внимание ученых. По-видимому, наиболее важной из них является то, что обнаружение черных дыр имело бы значение, далеко выходящее за рамки астрофизики, поскольку речь идет не об открытии еще одного, быть может, довольно удивительного астрофизического объекта, а о проверке правильности наших представлений о свойствах пространства и времени в сильных гравитационных полях.
Теоретические исследования свойств черных дыр и возможных следствий гипотезы об их существовании особенно интенсивно развивались последние 15 ,Лет. Наряду с изучением тех особенностей черных дыр, которые важны для понимания их возможных астрофизических проявлений, теоретические исследования позволили обнаружить ряд неожиданных закономерностей, ирису-1Дих физическим взаимодействиям с участием черных Дыр и установить глубокую связь физики черных дыр. С такими на первый взгляд далекими областями, как Термодинамика и теория информации. О черных дырах, их месте в астрофизике и об их удивительных свойствах и пойдет речь ниже.
Самое “слабое” взаимодействие. За возникновение черных дыр ответственны силы тяготения, вероятно, самого удивительного из всех известных физике взаимодействий, Начнем с того, что гравитационное взаимодействие — самое слабое. О его слабости можно судить,
например, по такому факту. Если принять за единицу энергию ядерного (сильного) взаимодействия между двумя протонами на расстоянии порядка размера протона, 2*10-14 см, то энергия их электромагнитного взаимодействия будет в e2/-hc~1/137 Раз (-h - аш с чертой) меньше, энергия слабого взаимодействия достигает 10-5, а энергия гравитационного притяжения составит всего лишь 10-38. И несмотря на это, силы тяготения не только были открыты первыми, а закон Ньютона, описывающий эти силы, послужил отправной точкой для описания других взаимодействий, но и в подавляющем числе явлений в астрофизике и космологии гравитация играет основную роль. Причина этого состоит в том, что тяготение обладает рядом замечательных свойств, ведущих к его многократному усилению, не будь которого, это взаимодействие скорее всего вообще не было бы открыто. Что же это зa свойства?
Гравитационные силы — дальнодействующие. Свойство дальнодействия означает, что сила, действующая на пробную частицу со стороны тела, создающего поле, медленно, по степенному закону, уменьшается с расстоянием. Благодаря этому свойству пробная частица испытывает тяготение со стороны всех частей массивного тела, в том числе и достаточно от нее удаленных. Этим свойством наряду с тяготением обладает Электромагнитное взаимодействие, в то время как сильное и слабое взаимодействия являются короткодействующими и имеют малые радиусы действия. Физическая причина такого различия состоит в том, что кванты, переносчики сильного и слабого взаимодействия, обладают ненулевой массой покоя, что приводит к экспоненциально быстрому убыванию силы на расстояниях, превышающих комптоновскую длину волны lambda = -h/тс этих квантов. Радиусы действия сильного и слабого взаимодействий ~ 10-13 и 10-17 см соответственно. Кванты электромагнитного поля, фотоны, и кванты гравитационного поля, гравитоны, — частицы безмассовые, и сила взаимодействия между парой электрических зарядов или массивных тел убывает по известному степенному закону: сила обратно пропорциональна квадрату расстояния.
Гравитационные силы имеют один знак. Между электромагнитным и гравитационным взаимодействиями имеется, однако, существенное отличие. В природе существуют электрические заряды двух видов: положи-
тельные и отрицательные, причем одноименные заряды отталкиваются. Это приводит к тому, что в макроскопических телах электрический заряд обычно практически скомпенсирован, в противном случае они были бы разорваны на части мощными силами электростатического отталкивания. Более того, при отсутствии, сторонних сил процессы в системах с заряженными телами протекают таким образом, чтобы уменьшить потенциальную энергию, при этом заряды противоположных знаков будут компенсироваться. Все это приводит к тому, что в естественных условиях электрический заряд макроскопических тел оказывается пренебрежимо малым,
Напротив, “заряды тяготения” — массы — всегда имеют один и тот же знак, причем они не отталкиваются, а притягиваются друг к другу. При этом чем тело массивнее, тем оно более устойчиво относительно “развала”. Для гравитационного взаимодействия характерен следующий, механизм самоусиления: массивное тело притягивает к себе вещество, падающее вещество увеличивает массу тела и, следовательно, его способность. Притягивать. Силы тяготения, ничтожно малые для отдельных элементарных частиц, суммируясь при составлении из них макроскопического тела, могут достигать огромной величины, вырастая в космическом масштабе, в могучий, нередко определяющий фактор. При этом малость константы гравитационного взаимодействия компенсируется большой величиной гравитационного заряда. Описанный выше механизм самоусиления приводит к тому, что в тех масштабах, в которых тяготение доминирует над другими взаимодействиями, однородное распределение вещества оказывается неустойчивым и рост случайных неоднородностей вызывает развитие, в частности, таких наблюдаемых структур, как планеты, звезды, галактики и скопления галактик.
Универсальность гравитационного взаимодействия. Гравитационное взаимодействие обладает еще одним, крайне важным, отличительным свойством — оно универсально. Для каждого из остальных, перечисленных выше взаимодействий существуют нейтральные частицы, тогда как все объекты, существующие в природе (включая и поля), порождают гравитационное поле. В роли гравитационного заряда выступает полная масса т системы, которая, как учит специальная теория
относительности, связана с полной энергией системы Е соотношением т=Е/с2. Именно поэтому все объекты природы, обладая энергией, непременно участвуют в гравитационном взаимодействии. “Весит”, в частности, и само гравитационное поле, что приводит к существенной нелинейности уравнений Эйнштейна, описывающих тяготение.
ЧТО ТАКОЕ ЧЕРНАЯ ДЫРА?Вывод Лапласа. Гравитационное поле тем сильнее, чем больше масса тела и чем меньше размер области пространства, в которой это тело сосредоточено. Еще в 1795 г. великий французский математик Пьер-Симон Лаплас, исследуя распространение света в поле тяготения, пришел к выводу, что в природе могут встречаться тела, абсолютно черные для внешнего наблюдателя. Поле тяготения таких тел настолько велико, что не вы пускает наружу лучей света. На языке космонавтики 9то означает, что вторая космическая скорость была бы больше скорости света с. Вывод Лапласа основывался на следующем рассуждении. Для того чтобы преодолеть гравитационное притяжение, создаваемое телом с массой М, и улететь на бесконечность, пробное тело на поверхности этого тела радиуса R должно обладать скоростью v, такой, что v2/2>=GM/R. Считая, что это соотношение применимо для света, мы вместе с Лапласом приходим к заключению, что если масса объекта сосредоточена в области с радиусом, меньшим так называемого гравитационного радиуса тела? Rg :Rg= =2GМ/с2~=~1,5-10-28 М (масса М измеряется в граммах, Rg — в сантиметрах), то даже свет не выйдет за пределы этой области. Для Солнца гравитационный радиус — около 3 км, для Земли — порядка 1 см.
Теория Эйнштейна — ключ к проблеме черных дыр. Вывод Лапласа, строго говоря, является ошибочным, поскольку он основан на классической механике и 'теории тяготения Ньютона. В действительности, однако, нельзя пользоваться ни той, ни другой: распространение света подчиняется законам релятивистской механики, а сильное поле тяготения, т. е. поле, гравитационный потенциал которого phi = GM/R в единицах с2 порядка единицы: phi/с2~1, описывается общей теорией относительности. Тем не менее, как это иногда случается в истории
науки, обе “ошибки” Лапласа точно скомпенсировали друг друга и вывод о невозможности выхода световых сигналов из-под гравитационного радиуса оказался совершенно правильным. Более того, связанный со специальной теорией относительности и справедливый в общей теории относительности запрет на существование в природе сигналов, переносящих информацию со скоростью, большей скорости света, придал утверждению о невозможности получения какой-либо информации о событиях, происходящих под гравитационным радиусом, еще более категорический смысл.
..Подобное тело, сжатое до размера своего гравитационного радиуса, получило название черной дыры, а границу черной дыры, т. е. поверхность, ограничивающую область, откуда невозможен выход сигналов, стали называть горизонтом событий. Хотя вывод Лапласа о возможности существования черных дыр сохраняется и в общей теории относительности Эйнштейна, само описание этого объекта имеет существенные отличия. Прежде чем перейти к точному определению черных дыр и к рассказу об их удивительных свойствах, необходимо хотя бы несколько слов сказать об эйнштейновской теории гравитации.
КРАТКИЕ СВЕДЕНИЯ ОБ ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ ЭЙНШТЕЙНАПринцип эквивалентности. Общая теория относительности, в окончательной форме сформулированная Эйнштейном в 1915 г., возникла в результате попытки построения релятивистского обобщения теории тяготения Ньютона, т. е. приведения теории Ньютона в соответствие с принципом конечности скорости распространения взаимодействия и с законами специальной теории относительности. Исходным пунктом для построения общей теории относительности явился принцип эквивалентности инертной и гравитационной масс. Согласно этому принципу отношение гравитационной массы mгр, определяющей силу F, действующую на тело в гравитационном поле напряженности T:F = mгрГ, к инертной массе тин, связывающей силу F и величину вызываемого ею ускорения a:F = mинa, не зависит от свойств и состава тела. Поэтому ускорение пробного тела в трави-
рационном поле определяется только напряжённостью поля в точке, где тело находится. Иными словами; "в гравитационном поле зависимость от времени положения пробного точечного тела, его мировая линия, однозначно определяется начальным положением тела и его скоростью. Тем самым задача изучения движения частиц в гравитационном поле сводится к изучению геометрии мировых линий. В отсутствие поле тяготения мировые линии движения свободных частиц являются прямыми, т. е. кратчайшими, линиями между произвольной парой точек, лежащих на них. Оказывается, что при наличии гравитационного поля мировые линии пробных тел тоже можно считать “кратчайшими”, если только отказаться от предположения о том, что простр?а нет вовремя — плоское, и подобрать его геометрию соответствующим образом.
Гравитация как геометрия. Геометрия искривленного пространства определяется заданием расстояния между произвольной парой близких точек этого пространства. Тем самым определяется понятие длины любой кривой в таком пространстве. “Кратчайшие” кривые Лосят название геодезических. В заданных координатах квадрат расстояния ds2 между парой близких точек 'с координатами хмю и х'+dxмю в точке х определяется следующим образом: ds2 = gмюню (х)dхмю dхню, . Набор функций gмюню , задающий в каждой координатной системе pdc-стояние между близкими точками, называется метрикой. В плоском пространстве-времени координаты можно выбрать так, что функции gмюню постоянны во всем пространстве-времени и метрика имеет вид: ds2 = этамюню dxмюdx' -= (тождественно=) —C2dt2 + dx2 + dy2 + dz2. В общем случае это невозможно. Самое большее, чего удается достичь за счет выбора координат, это добиться совпадения метрики gмюню (х) В Окрестности ПРОИЗВОЛЬНОЙ ТОЧКИ x0 С этамюню с точностью до величин второго порядка малости.
Предположим теперь, что в гравитационном поле свободно движется невращающееся пробное тело. Свяжем с ним систему отсчета и, воспользовавшись принципом эквивалентности, постараемся описать в этой системе явления, происходящие в окрестности тела. Прежде всего заметим, что если мы ограничимся областью пространства-времени, размеры которой I много меньше характерной длины L, на которой гравитационное ноле
заметно изменяется, то ускорения всех тел в такой окрестности практически совпадают и относительно выбранной нами системы отсчета такие тела будут двигаться равномерно и прямолинейно. Иными словами, переходом к свободно падающей системе отсчета можно локально исключить гравитационное поле. В такой системе отсчета движение тел подчиняется законам, специальной теории относительности, а отклонение от этих законов тем меньше, чем меньше величина отношения HL,
Строго говоря, сделанный вывод о возможности, две-дения путем перехода к падающей системе отсчета задачи о движении в гравитационном поле к задаче о движении в инерциальной системе отсчета вне поля тяготения, т. е. к задаче специальной теории относительности, непосредственно касается только механических явлений. Заметим, однако, что осуществленная с крайне высокой степенью точности экспериментальная проверка равенства инертной и гравитационной массы { Вариация отношения mгр/mин при выборе различных веществ не превышает величины 10-12. Этот лучший в настоящее время результат был получен в 1971 г. в МГУ в группе В. Б. Брагинского.} позволяет распространить этот вывод на широкий класс немеханических явлений и сделать далеко идущие выводы о характере взаимодействия вещества и физических полей с гравитацией.
Дело в том, что свой вклад в полную энергию системы, а следовательно, и в ее инертную массу, вносят не только механические массы покоя частиц, входящих в состав системы, но и кинетическая энергия, связанная с их движением, а также и потенциальная энергия электромагнитного, сильного, слабого и самого гравитационного взаимодействий частиц друг с другом. Тот факт, что гравитационный заряд, равный гравитационной массе системы, совпадает с ее полной инертной массой, означает, что каждое из взаимодействий дает свой вклад в вес тела.
Объяснить эти экспериментальные результаты можно, лишь предположив, что принцип эквивалентности справедлив не только для механических движений, т. е. что выполняется более общий, так называемый принцип эквивалентности Эйнштейна, гласящий, что результат любого (не обязательно механического) локального эксперимента, выполненного в свободно падающей системе отсчета, не зависит от того, где и когда во Вселенной этот эксперимент был выполнен, и от того, с какой скоростью двигалась система отсчета. Согласно этому принципу для описания взаимодействия любой системы с гравитационным полем достаточно знать закон, управляющий поведением системы в инерциальной системе отсчета. Поведение системы в гравитационном поле, описываемом метрикой gмюню , определяется простым пересчетом с помощью преобразования координат. Эта задача имеет чисто геометрический характер.
Приливные силы и кривизна пространства-времени. Если гравитационное поле неоднородно, то исключить его путем перехода к падающей системе отсчета сразу во всем пространстве или в конечной, но не очень малой области не удается. Действительно, рассмотрим, например, относительное движение в гравитационном поле Земли двух частиц, расположенных на расстоянии l друг от друга и падающих по радиусу к ее центру (рис. 1). При этом движении частицы 1 к 2 сближаются, ускорение их относительного сближения равно GMl/R3. Частицы 3 и 4 удаляются друг от друга с относительным ускорением 2GMl/R3. Это означает, что при
Рекомендуем скачать другие рефераты по теме: новые сочинения, мировая экономика.
Категории:
1 2 3 | Следующая страница реферата