Получение магнитопроводов из ферритов и магнитодиэлектриков
| Категория реферата: Промышленность, производство
| Теги реферата: темы рефератов по информатике, реферат на тему биография
| Добавил(а) на сайт: Perov.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Для обеспечения требуемой точности формы и размеров при изготовлении пластинчатых магнитопроводов с заданной шероховатостью поверхности используют штамповку, обработку резанием и физико-химические методы. При штамповке и обработке резанием в поверхностных слоях материала в результате силового воздействия инструмента кристаллы правильной формы, характерные для исходного материала, разрушаются и ориентируются в направлении движения инструмента. В результате ухудшаются характеристики магнитопроводов, например, магнитная проницаемость уменьшается, а коэрцитивная сила увеличивается. Для восстановления магнитных характеристик материала проводят отжиг, вызывающий рекристаллизацию материала.
При изготовлении разрезных ленточных магнитопроводов разрезание является одной из ответственных операций. Отклонение режимов этой операции от оптимальных может привести к появлению короткозамкнутых витков и наклепу, в результате возрастут потери на вихревые токи. Разрезание магнитопроводов осуществляют различными способами, например, фрезерованием, абразивным кругом, электроискровой обработкой и т. д. При фрезеровании поверхность разреза получается неровной, а витки магнитопровода оказываются короткозамкнутыми. Кроме того, имеет место наклеп и изменение ориентации зерен в месте разреза. Разрезание магнитопроводов абразивным кругом (шероховатость обработанной поверхности Rа 1,25 мкм) и электроискровой обработкой (Rz 20 мкм) дают лучшие результаты. После разрезания абразивным кругом отпадает необходимость применения последующего шлифования. Электроискровая обработка позволяет избежать механического воздействия на магнитопровод и замыкание отдельных его витков. Поверхностный слой, в котором в результате теплового воздействия происходит изменение ориентации зерен до глубины 0,05—0,08 мм, удаляется при последующем шлифовании торцов магнитопровода.
Точность размеров, формы и качество поверхности формованных магнитопроводов обеспечивается точностью размеров и шероховатостью поверхности оформляющей полости пресс-форм. Магнитные характеристики формованных магиитопроводов обеспечиваются качеством порошка магнитного материала и материала диэлектрической связи. Количество связки при изготовлении магнитопроводов должно быть по возможности минимальным, так как ее увеличение резко снижает магнитную проницаемость магнитопровода и увеличивает диэлектрические потери. Формовочная смесь на основе полистирола обладает хорошей текучестью, поэтому ее используют для изготовления сложных по форме магнитопроводов. Магнитная проницаемость формованных магнитопроводов зависит от их плотности, которая обеспечивается выбором давления при прессовании. С увеличением давления прессования магнитная проницаемость возрастает до определенного значения для данного типа магнитного материала. При дальнейшем увеличении давления прессования возрастают потери на гистерезис, так как имеет место пластическая деформация феррочастиц, возрастает электропроводность и потери на вихревые токи из-за разрушения изоляционной пленки вокруг феррочастиц.
Оптимальное давление прессования для магнитодиэлектриков лежит в интервале 600— 1000 МПа, а для ферритов — 80—200 МПа. Продолжительность выдержки под нагрузкой не влияет на плотность магнитного материала. Обеcпечение равномерной плотности магнитного материала в формованном магнитопроводе осуществляется прессованием в пресс-формах с двойным давлением сверху и снизу. Кроме того, в магнитопроводах из ферритов в случае неравномерной плотности при последующем спекании возникают значительные внутренние напряжения, вызывающие коробление и растрескивание. Для исключения растрескивания магнитопроводов из ферритов проводят следующие технологические мероприятия:
перед спеканием нагревом из них удаляют связку;
при спекании скорость подъема температуры ограничивают 200—300 К/ч из-за быстрого испарения оставшейся связки;
после выдержки при температуре спекания требуется медленное охлаждение со скоростью 50—100 К/ч.
Магнитопроводы с одинаковыми магнитными характеристиками могут быть получены только при одинаковой температуре по всей рабочей зоне печи. Температурный режим поддерживается с точностью ±5 К автоматическим регулированием.
Технологический процесс изготовления деталей методом порошковой металлургии
Четыре основных операции: смешивание, формование, спекание и калибрование.
· Смешивание.
Смешивание – это приготовление однородной механической смеси из металлических порошков различного химического и гранулометрического состава или смеси металлических порошков с неметаллическими.
Формование.
Формование изделий осуществляем путем холодного прессования под большим давлением (30–1000 МПа) в металлических формах. Обычно используются закрытые пресс-формы. Смесь порошков свободно засыпается в полость матрицы, объемная дозировка регулируется ходом нижнего пуансона. Прессование может быть одно- или двусторонним в зависимости от отношения высоты детали к ее диаметру (поперечному размеру). Для формования и калибрования используем прессовое оборудование с механическим, гидравлическим или пневматическим приводом. Полученная прессовка имеет размер и форму готового изделия, а также достаточную прочность для перегрузки и транспортировки к печи для спекания.
· Спекание.
Спекание изделий из однородных металлических порошков производится при температуре, составляющей 70–90% температуры плавления металла. В смесях максимальная когезия достигается вблизи температуры плавления основного компонента, а в цементированных карбидах – вблизи температуры плавления связующего. С повышением температуры и увеличением продолжительности спекания увеличиваются усадка, плотность и улучшаются контакты между зернами. Во избежание окисления спекание проводят в восстановительной атмосфере (водород, оксид углерода), в атмосфере нейтральных газов (азот, аргон) или в вакууме. Прессовка превращается в монолитное изделие, технологическая связка выгорает.
· Калибрование.
При калибровании изделий достигается нужная точность размеров, улучшается качество поверхности и повышается прочность. Примерно 80% нашей продукции проходят эту операцию.
Порошковые изделия готовы к использованию. Однако, для предания заданных свойств, иногда применяются дополнительные операции (пропитка смазками, механическая, термическая, химическая обработка и др.)
Преимущества порошковой металлургии Пять основных преимуществ: безотходность, производительность, высочайшая точность, широкий диапазон свойств, получение уникальных свойств. · Безотходность. Технологию порошковой металлургии можно назвать безотходной. Потери сырья составляют не более 5%. · Производительность. Также экономический эффект можно получить за счет полной автоматизации изготовления деталей на пресс-автоматах (а еще лучше - на роторных линиях). Простые детали можно прессовать свыше 5000 штук в час. · Высочайшая точность. Высокая точность формы и размеров детали обеспечивается особенностями технологии, высокоточным прессовочным и калибровочным пресс-инструментом. Получаем 2-й класс точности (6-7 квалитет) · Широкий диапазон получаемых свойств. Можно регулировать физические, механические, электрические, магнитные и др. свойства производимой продукции. Например, задавать нужные электрические свойства контактов, магнитные свойства магнитопроводов и механические свойства конструкционных деталей. Особенностью порошковой металлургии является возможность изготавливать пористые материалы. Например, можно задавать необходимую пористость для фильтров или самосмазываемых подшипников скольжения. Эксплуатационные характеристики продукции можно сделать более гибкими за счет применения возможностей порошковой металлургии. · Получение уникальных свойств, не достижимых другими традиционными методами. Порошковая технология предоставляет возможности для создания псевдосплавов (из несплавляющихся металлов) и материалов с особыми специальными свойствами, которые нельзя получить, применяя другие известные промышленные методы изготовления. Также она предоставляет возможность получения материалов высокой чистоты.
Технологический процесс изготовления магнитопроводов из ферритов и магнитодиэлектриков
Типовой ТП изготовления магнитопроводов из магнитодиэлектриков включает следующие основные этапы: приготовление порошка магнитного материала, приготовление формовочной смеси, формование, термообработка, пропитка магнитопроводов.
Приготовление порошка магнитного материала осуществляется размолом чистых магнитных материалов (карбонильного железа, альсифера и т. д.).
Приготовление формовочной смеси заключается в том, что порошок магнитного материала смешивают с термопластичной или термореактивной связкой. Термопластичная связка в виде тонкоизмельченного порошка (например, полистирола) или термореактивная — в виде раствора, например бакелитовой смолы в спирте, подается в определенной пропорции с порошком магнитного материала в смеситель, где формовочная смесь тщательно перемешивается для обеспечения полного обволакивания магнитного порошка диэлектрической связкой. Формовочная смесь на основе полистирола после смешивания готова к формованию, а смесь на основе бакелитовой смолы предварительно подсушивается для удаления летучих составляющих на металлических противнях и просеивается, после чего подается на формование.
Формование магнитопроводов осуществляют теми же методами, что и прессование пластмасс, а именно, холодным и горячим прессованием и горячим литьем под давлением. Магнитодиэлектрики с термореактивной связкой обычно формуют холодным и горячим прессованием, а магнитодиэлектрики с термопластичной связкой — литьем под давлением. Холодное прессование проводится при следующих режимах: давление 800—1000 МПа, температура 288—298 К, выдержка под давлением 1—2 с. Режимы горячего прессования формовочной массы на основе полистирола: предварительный нагрев пресс-формы до 453—473 К, давление 400—500 МПа, выдержка под давлением 3—10 мин, охлаждением пресс-формы до 353— 358 К.
Рекомендуем скачать другие рефераты по теме: тесты онлайн, реферат на тему система.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата