Революция в оптике (лазеры и их применения)
| Категория реферата: Промышленность, производство
| Теги реферата: менеджмент, реферат на тему война
| Добавил(а) на сайт: Емельян.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
Выделение частот генерации достигается тем, что порог генерации создается только для узкой области частот. Например, положения призмы и зеркала подбираются так, что в среду после отражения от зеркала благодаря дисперсии и разным углам преломления возвращаются лишь лучи с определенной длиной волны. Только для таких длин волн обеспечивается лазерная генерация. Вращая призму, можно обеспечить непрерывную перестройку частоты излучения лазера на красителях. Генерация осуществлена со многими красителями, что позволило получить лазерное излучение не только во всем оптическом диапазоне, но и на значительной части инфракрасной и ультрафиолетовой областей спектра.
Полупроводниковые лазеры. Основным примером работы полупроводниковых лазеров является магнитно-оптический накопитель (МО).
Принципы работы МО накопителя.
МО накопитель построен на совмещении магнитного и оптического принципа хранения информации. Записывание информации производится при помощи луча лазера и магнитного поля, а считывание при помощи одного только лазера.
В процессе записи на МО диск лазерный луч нагревает определенные точки на диски, и под воздействием температуры сопротивляемость изменения полярности, для нагретой точки, резко падает, что позволяет магнитному полю изменить полярность точки. После окончания нагрева сопротивляемость снова увеличивается. Полярность нагретой точки остается в соответствии с магнитным полем, примененным к ней в момент нагрева.
В имеющихся на сегодняшний день МО накопителях для записи информации применяются два цикла: цикл стирания и цикл записи. В процессе стирания магнитное поле имеет одинаковую полярность, соответствующую двоичным нулям. Лазерный луч нагревает последовательно весь стираемый участок и таким образом записывает на диск последовательность нулей. В цикле записи полярность магнитного поля меняется на противоположную, что соответствует двоичной единице. В этом цикле лазерный луч включается только на тех участках, которые должны содержать двоичные единицы, оставляя участки с двоичными нулями без изменений.
В процессе чтения с МО диска используется эффект Керра, заключающийся в изменении плоскости поляризации отраженного лазерного луча, в зависимости от направления магнитного поля отражающего элемента. Отражающим элементом в данном случае является намагниченная при записи точка на поверхности диска, соответствующая одному биту хранимой информации. При считывании используется лазерный луч небольшой интенсивности, не приводящий к нагреву считываемого участка, таким образом при считывании хранимая информация не разрушается.
Такой способ в отличие от обычного применяемого в оптических дисках не деформирует поверхность диска и позволяет повторную запись без дополнительного оборудования. Этот способ также имеет преимущество перед традиционной магнитной записью в плане надежности. Так как перемагничеваниие участков диска возможно только под действием высокой температуры, то вероятность случайного перемагничевания очень низкая, в отличие от традиционной магнитной записи, к потери которой могут привести случайные магнитные поля.
Область применения МО дисков определяется его высокими характеристиками по надежности, объему и сменяемости. МО диск необходим для задач, требующих большого дискового объема. Это такие задачи, как обработка изображений звука. Однако небольшая скорость доступа к данным, не дает возможности применять МО диски для задач с критичной реактивностью систем. Поэтому применение МО дисков в таких задачах сводится к хранению на них временной или резервной информации. Для МО дисков очень выгодным использованием является резервное копирование жестких дисков или баз данных. В отличие от традиционно применяемых для этих целей стримеров, при хранение резервной информации на МО дисках, существенно увеличивается скорость восстановления данных после сбоя. Это объясняется тем, что МО диски являются устройствами с произвольным доступом, что позволяет восстанавливать только те данные, в которых обнаружился сбой. Кроме этого при таком способе восстановления нет необходимости полностью останавливать систему до полного восстановления данных. Эти достоинства в сочетании с высокой надежностью хранения информации делают применение МО дисков при резервном копировании выгодным, хотя и более дорогим по сравнению со стримерами.
Применение МО дисков, также целесообразно при работе с приватной информацией больших объемов. Легкая сменяемость дисков позволяет использовать их только во время работы, не заботясь об охране компьютера в нерабочее время, данные могут храниться в отдельном, охраняемом месте. Это же свойство делает МО диски незаменимыми в ситуации, когда необходимо перевозить большие объемы с места на место, например с работы домой и обратно.
Основные перспективы развития МО дисков связаны прежде всего с увеличением скорости записи данных. Медленная скорость определяется в первую очередь двухпроходным алгоритмом записи. В этом алгоритме нули и единицы пишутся за разные проходы из-за того, что магнитное поле, задающие направление поляризации конкретных точек на диске, не может изменять свое направление достаточно быстро.
Наиболее реальная альтернатива двухпроходной записи - это технология, основанная на изменение фазового состояния. Такая система уже реализована некоторыми фирмами-производителями. Существуют еще несколько разработок в этом направлении, связанные с полимерными красителями и модуляциями магнитного поля и мощности излучения лазера.
Технология, основанная на изменении фазового состояния, основана на способности вещества переходить из кристаллического состояния в аморфное. Достаточно осветить некоторую точку на поверхности диска лучом лазера определенной мощности, как вещество в этой точке перейдет в аморфное состояние. При этом изменяется отражающая способность диска в этой точке. Запись информации происходит значительно быстрее, но при этом деформируется поверхность диска, что ограничивает число циклов перезаписи.
В настоящие время уже разрабатывается технология, позволяющая менять полярность магнитного поля на противоположную всего за несколько наносекунд. Это позволит изменять магнитное поле синхронно с поступлением данных на запись. Существует также технология, построенная на модуляции излучения лазера. В этой технологии дисковод работает в трех режимах: режим чтения с низкой интенсивностью, режим записи со средней интенсивностью и режим записи с высокой интенсивностью. Модуляция интенсивности лазерного луча требует более сложной структуры диска и дополнения механизма дисковода инициализирующим магнитом, установленным перед магнитом смещения и имеющим противоположную полярность. В самом простом случае диск имеет два рабочих слоя - инициализирующий и записывающий. Инициализирующий слой сделан из такого материала, что инициализирующий магнит может изменять его полярность без дополнительного воздействия лазера.
Безусловно МО диски перспективные и бурно развивающиеся устройства, которые могут решать назревающие проблемы с большими объемами информации. Но их дальнейшее развитие зависит не только от технологии записи на них, но и от прогресса в области других носителей информации. И если не будет изобретен более эффективный способ хранения информации, МО диски возможно займут доминирующие роли.
Голография.
Метод фотографирования, используемый для сохранения изображения предметов, известен уже довольно долгое время и сейчас это самый доступный способ получения изображения объекта на каком-либо носителе (фотобумага, фотоплёнка). Однако информация, содержащаяся в фотографии весьма ограничена. В частности, отсутствует информация о расстояниях различных частей объекта от фотопластинки и других важных характеристиках. Другими словами, обычная фотография не позволяет восстановить полностью тот волновой фронт, который на ней был зарегистрирован. В фотографии содержится более или менее точная информация об амплитудах зафиксированных волн, но полностью отсутствует информация о фазах волн.
Голография позволяет устранить этот недостаток обычной фотографии и записать на фотопластинке информацию не только об амплитудах падающих на неё волн, но и о фазах, то есть полную информацию. Восстановленная с помощью такой записи волна полностью идентична первоначальной и содержит в себе всю информацию, которую содержала первоначальная волна. Поэтому метод был назван голографией, то есть методом полной записи волны.
Для того чтобы осуществить этот метод в световом диапазоне, необходимо иметь излучение с достаточно высокой степенью когерентности. Такое излучение можно получить при помощи лазера. Поэтому только после создания лазеров, дающих излучение с высокой степенью когерентности, удалось практически осуществить голографию.
Первоначальная задача голографии заключалась в получении объёмного изображения. С развитием голографии на толстослойных пластинах возникла возможность создания объёмных цветных фотографий. На этой базе исследуются пути реализации голографического кино, телевидения и т. д.
Один из методов прикладной голографии, именуемый голографической интерферометрией, нашел очень широкое распространение. Суть метода в следующем. На одну фотопластинку последовательно регистрируются две интерференционные картины, соответствующие двум разным, но мало отличающимся состояниям объекта, например, при деформации. При просвечивании такой “двойной” голограммы образуются, очевидно, два изображения объекта, измененные относительно друг друга в той же мере, что и объект в двух его состояниях. Восстановленные волны, формирующие эти два изображения, когерентны, интерферируют, и на новом изображении наблюдаются интерференционные полосы, которые и характеризуют изменение состояния объекта.
В другом варианте голограмма изготавливается для какого-то определенного состояния объекта. При просвечивании ее объект не удаляется и производится его повторное освещение, как на первом этапе голографирования. Тогда опять получается две волны, одна формирует голографическое изображение, а другая распространяется от самого объекта. Если теперь происходят какие-то изменения в состоянии объекта (в двух последовательных волнами возникает разность сравнении с тем, что было во время экспонирования голограммы), то между указанными хода, и изображение покрывается интерференционными полосами. Описанный способ применяется для исследования деформаций предметов, их вибраций, поступательного движения и вращений, неоднородности прозрачных объектов и т. п.
Интересно применение голографии в качестве носителя информации. Часто необходимо получить объемное изображение предмета, которого еще не существует, и следовательно, нельзя получить голограмму такого предмета оптическими методами. В этом случае голограмма рассчитывается на ЭВМ (цифровая голограмма) и результаты расчета соответствующим образом переносятся на фотопластинку. С полученной таким способом машинной голограммы объемное изображение предмета восстанавливается обычным оптическим способам. Поверхность предмета, полученного по машинной голограмме, используется как эталон, с которым методами голографической интерференции производится сравнение поверхности реального предмета, изготовляемого соответствующими инструментами. Голографическая интерферометрия позволяет произвести сравнение поверхности изготовленного предмета и эталона с чрезвычайно большой точностью до долей длины волны. Это дает возможность изготовлять с такой же большой точностью очень сложные поверхности, которые было бы невозможно изготовить без применения цифровой голографии и методов голографической интерферометрии. Само собой разумеется, что для сравнения эталонной поверхности с изготовляемой не обязательно восстанавливать оптическим способом машинную голограмму. Можно снять голограмму предмета, перевести ее на цифровой язык ЭВМ и сравнить с цифровой голограммой. Оба эти пути в принципе эквивалентны.
Особенности голограмм как носителей информации делают весьма перспективными разработки по созданию голографической памяти, которая характеризуется большим объемом, надежностью, быстротой считывания и т. д.
Краткий исторический обзор .
Рекомендуем скачать другие рефераты по теме: экзамены, бесплатные доклады.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата