Разработка онтологий 101: руководство по созданию Вашей первой онтологии
| Категория реферата: Рефераты по психологии
| Теги реферата: реферат на тему биография, контрольные 5 класс
| Добавил(а) на сайт: Bitner.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Разработка онтологий 101: руководство по созданию Вашей первой онтологии[1]
Наталья Ф. Ной (Natalya F. Noy) и Дэбора Л. МакГиннесс (Deborah L. McGuinness)
Стэнфордский Университет, Стэнфорд, Калифорния
Онтологии стали центральными компонентами многих больших приложений, хотя учебный материал не соответствует растущему интересу. В этой работе обсуждается вопрос, зачем строить онтологию, и предлагается методология создания онтологий, основанная на системах представления декларативных знаний. Она использует опыт двух авторов в построении и поддержке онтологий в ряде онтологических сред, включая Protege-2000, Ontolingua и Chimaera. В ней представлена методология на примере учебной базы знаний по винам. Несмотря на то, что статья адресована пользователям фреймовых систем, она может быть полезна для построения онтологий в любой объектно-ориентированной системе.
1. Зачем создавать онтологию?
В последние годы разработка онтологий - формальных явных описаний терминов предметной области и отношений между ними – переходит из мира лабораторий по искусственному интеллекту на рабочие столы экспертов по предметным областям. Во всемирной паутине онтологии стали обычным явлением. Онтологии в сети варьируются от больших таксономий, категоризирующих веб-сайты (как на сайте Yahoo!), до категоризаций продаваемых товаров и их характеристик (как на сайте Amazon.com). Консорциум WWW (W3C) разрабатывает RDF (Resource Description Framework), язык кодирования знаний на веб-страницах, для того, чтобы сделать их понятными для электронных агентов, которые осуществляют поиск информации. Управление перспективных исследований и разработок министерства обороны США (The Defense Advanced Research Projects Agency, DARPA ) в сотрудничестве с W3C разрабатывает Язык Разметки для Агентов DARPA (DARPA Agent Markup Language, DAML), расширяя RDF более выразительными конструкциями, предназначенными для облегчения взаимодействия агентов в сети. Во многих дисциплинах сейчас разрабатываются стандартные онтологии, которые могут использоваться экспертами по предметным областям для совместного использования и аннотирования информации в своей области. Например, в области медицины созданы большие стандартные, структурированные словари, такие как snomed и семантическая сеть Системы Унифицированного Медицинского Языка (the Unified Medical Language System). Также появляются обширные общецелевые онтологии. Например, Программа ООН по развитию (the United Nations Development Program) и компания Dun & Bradstreet объединили усилия для разработки онтологии UNSPSC, которая предоставляет терминологию товаров и услуг (http://www.unspsc.org/).
Онтология определяет общий словарь для ученых, которым нужно совместно использовать информацию в предметной области. Она включает машинно-интерпретируемые формулировки основных понятий предметной области и отношения между ними.
Почему возникает потребность в разработке онтологии? Вот некоторые причины:
Для совместного использования людьми или программными агентами общего понимания структуры информации.
Для возможности повторного использования знаний в предметной области .
Для того чтобы сделать допущения в предметной области явными.
Для отделения знаний в предметной области от оперативных знаний.
Для анализа знаний в предметной области.
Совместное использование людьми или программными агентами общего понимания структуры информации является одной из наиболее общих целей разработки онтологий. К примеру, пусть, несколько различных веб-сайтов содержат информацию по медицине или предоставляют информацию о платных медицинских услугах, оплачиваемых через Интернет. Если эти веб-сайты совместно используют и публикуют одну и ту же базовую онтологию терминов, которыми они все пользуются, то компьютерные агенты могут извлекать информацию из этих различных сайтов и накапливать ее. Агенты могут использовать накопленную информацию для ответов на запросы пользователей или как входные данные для других приложений.
Обеспечение возможности использования знаний предметной области стало одной из движущих сил недавнего всплеска в изучении онтологий. Например, для моделей многих различных предметных областей необходимо сформулировать понятие времени. Это представление включает понятие временных интервалов, моментов времени, относительных мер времени и т.д. Если одна группа ученых детально разработает такую онтологию, то другие могут просто повторно использовать ее в своих предметных областях. Кроме того, если нам нужно создать большую онтологию, мы можем интегрировать несколько существующих онтологий, описывающих части большой предметной области. Мы также можем повторно использовать основную онтологию, такую как UNSPSC, и расширить ее для описания интересующей нас предметной области.
Создание явных допущений в предметной области, лежащих в основе реализации, дает возможность легко изменить эти допущения при изменении наших знаний о предметной области. Жесткое кодирование предположений о мире на языке программирования приводит к тому, что эти предположения не только сложно найти и понять, но и также сложно изменить, особенно непрограммисту. Кроме того, явные спецификации знаний в предметной области полезны для новых пользователей, которые должны узнать значения терминов предметной области.
Отделение знаний предметной области от оперативных знаний – это еще один вариант общего применения онтологий. Мы можем описать задачу конфигурирования продукта из его компонентов в соответствии с требуемой спецификацией и внедрить программу, которая делает эту конфигурацию независимой от продукта и самих компонентов. После этого мы можем разработать онтологию компонентов и характеристик ЭВМ и применить этот алгоритм для конфигурирования нестандартных ЭВМ. Мы также можем использовать тот же алгоритм для конфигурирования лифтов, если мы предоставим ему онтологию компонентов лифта.
Анализ знаний в предметной области возможен, когда имеется декларативная спецификация терминов. Формальный анализ терминов чрезвычайно ценен как при попытке повторного использования существующих онтологий, так и при их расширении.
Часто онтология предметной области сама по себе не является целью. Разработка онтологии сродни определению набора данных и их структуры для использования другими программами. Методы решения задач, доменно-независимые приложения и программные агенты используют в качестве данных онтологии и базы знаний, построенные на основе этих онтологий. К примеру, в этой статье мы разрабатываем онтологию вин и еды, а также подходящие комбинации вин и блюд. Затем эту онтологию можно будет использовать как основу для приложений в наборе инструментов для управления рестораном: Одно приложение могло бы составлять список вин для меню на текущий день или отвечать на запросы официантов и посетителей. Другое приложение могло бы анализировать инвентарный перечень винного погреба и предлагать категории вин для пополнения и конкретные вина для закупки к следующим меню или для поваренных книг.
Об этом руководстве
Мы основываемся на нашем опыте использования Protege-2000, Ontolingua, Chimaera в качестве сред для редактирования онтологий. В этом руководстве для наших примеров мы используем Protege-2000.
Пример вина и еды, который мы используем на протяжении всей статьи, сделан на основе примерной базы знаний, которая представлена в статье, описывающей CLASSIC – систему представления знаний, основанную на описательно-логическом подходе. В учебном пособии по CLASSIC этот пример получил дальнейшее развитие. Protege-2000 и другие фреймовые системы описывают онтологии декларативным образом, определяя явным образом, какова классовая иерархия и к каким классам принадлежат индивидные концепты.
Некоторые идеи по разработке онтологий в этом руководстве берут свое начало в литературе по объектно-ориентированному проектированию. Однако разработка онтологий отличается от проектирования классов и отношений в объектно-ориентированном программировании. Объектно-ориентированное программирование сосредотачивается главным образом на методах классов – программист принимает проектные решения, основанные на операторных свойствах класса, тогда как разработчик онтологии принимает эти решения, основываясь на структурных свойствах класса. В результате структура класса и отношения между классами в онтологии отличаются от структуры подобной предметной области в объектно-ориентированной программе.
Невозможно охватить все трудности, которые, возможно, придется преодолеть разработчику онтологии, и в этом руководстве мы не пытаемся затронуть их всех. Вместо этого мы пытаемся дать отправную точку, исходное руководство, которое могло бы помочь неопытному проектировщику онтологий в их разработке. В конце мы предлагаем источники, в которых можно посмотреть пояснения к более сложным структурам и механизмам разработки, если они потребуются для предметной области.
В конечном счете, единственной правильной методологии разработки онтологий не существует, и мы не пытались определить таковую. Представленные здесь идеи мы мы сочли полезными, исходя из нашего опыта разработки онтологий. В конце этого руководства мы предлагаем список ссылок на альтернативные методологии.
2. Из чего состоит онтология?
Рекомендуем скачать другие рефераты по теме: новые сочинения, курсовые, реферат финансовый.
Категории:
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата