Физические основы электроники
| Категория реферата: Рефераты по радиоэлектронике
| Теги реферата: ответы по истории, сочинения по русскому языку
| Добавил(а) на сайт: Дейнеко.
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата
Стабилитроны используются для создания стабилизаторов напряжения.
Напряжение стабилизации Uст равно напряжению электрического
(лавинного) пробоя p-n перехода при некотором заданном токе стабилизации
Iст (рисунок ). Стабилизирующие свойства характеризуются дифференциальным
сопротивлением стабилитрона rд = (U/(I, которое должно быть возможно
меньше.
[pic]
К параметрам стабилитрона относятся: напряжение стабилизации Ucт, минимальный и максимальный токи стабилизации Iст min Iст max.
Промышленностью выпускаются стабилитроны с параметрами: Ucт от 1,5 до 180
В, токи стабилизации от 0,5 мА до 1,4 А.
Выпускаются также двуханодные стабилитроны, служащие для стабилизации разнополярных напряжений и представляющие собой встречно включенные p-n переходы.
Рисунок 2.2 К определению параметров стабилитронов.
2.4 Универсальные и импульсные диоды
Они применяются для преобразования высокочастотных и импульсных сигналов. В данных диодах необходимо обеспечить минимальные значения реактивных параметров, что достигается благодаря специальным конструктивно- технологическим мерам.
Одна из основных причин инерционности полупроводниковых диодов связана с диффузионной емкостью. Для уменьшения времени жизни ( используется легирование материала (например, золотом), что создает много ловушечных уровней в запрещенной зоне, увеличивающих скорость рекомбинации и следовательно уменьшается Сдиф.
Разновидностью универсальных диодов является диод с короткой базой. В таком диоде протяженность базы меньше диффузионной длины неосновных носителей. Следовательно, диффузионная емкость будет определяться не временем жизни неосновных носителей в базе, а фактическим меньшим временем нахождения (временем пролета). Однако осуществить уменьшение толщины базы при большой площади p-n перехода технологически очень сложно. Поэтому изготовляемые диоды с короткой базой при малой площади являются маломощными.
В настоящее время широко применяются диоды с p-i-n-структурой, в
которой две сильнолегированные области p- и n-типа разделены достаточно
широкой областью с проводимостью, близкой к собственной (i-область). Заряды
донорных и акцепторных ионов расположены вблизи границ i-области.
Распределение электрического поля в ней в идеальном случае можно считать
однородным (в отличие от обычного p-n перехода). Таким образом, i-область с
низкой концентрацией носителей заряда, но обладающей диэлектрической
проницаемостью можно принять за конденсатор, «обкладками» которого являются
узкие (из-за большой концентрации носителей в p- и n-областях) слои зарядов
доноров и акцепторов. Барьерная емкость p-i-n диода определяется размерами
i-слоя и при достаточно широкой области от приложенного постоянного
напряжения практически не зависит.
Особенность работы p-i-n диода состоит в том, что при прямом
напряжении одновременно происходит инжекция дырок из p-области и электронов
из n-области в i-область. При этом его прямое сопротивление резко падает.
При обратном напряжении происходит экстракция носителей из i-области в
соседние области. Уменьшение концентрации приводит к дополнительному
возрастанию сопротивления i области по сравнению с равновесным состоянием.
Поэтому для p-i-n диода характерно очень большое отношение прямого и
обратного сопротивлений, что при использовании их в переключательных
режимах.
В качестве высокочастотных универсальных используются структуры с
Шоттки и Мотта. В этих приборах процессы прямой проводимости определяются
только основными носителями заряда. Таким образом, у рассматриваемых диодов
отсутствует диффузионная емкость, связанная с накоплением и рассасыванием
носителей заряда в базе, что и определяет их хорошие высокочастотные
свойства.
Отличие барьера Мотта от барьера Шоттки состоит в том, что тонкий i- слой создан между металлом М и сильно легированным полупроводником n+, так что получается структура М-i-n. В высокоомном i-слое падает все приложенное к диоду напряжение, поэтому толщина обедненного слоя в n+- области очень мала и не зависит от напряжения. И поэтому барьерная емкость практически не зависит от напряжения и сопротивления базы.
Наибольшую рабочую частоту имеют диоды с барьером Мотта и Шоттки, которые в отличие от p-n-перехода почти не накапливают неосновных носителей заряда в базе диода при прохождении прямого тока и поэтому имеют малое время восстановления tВОСТ (около 100 пс).
Разновидностью импульсных диодов являются диоды с накоплением заряда
(ДНЗ) или диоды с резким восстановлением обратного тока (сопротивления).
Импульс обратного тока в этих диодах имеет почти прямоугольную форму
(рисунок 4.2). При этом значение t1 может быть значительным, но t2 должно
быть чрезвычайно малым для использования ДНЗ в быстродействующих импульсных
устройствах.
Получение малой длительности t2 связано с созданием внутреннего поля в базе
около обедненного слоя p-n-перехода путем неравномерного распределения
примеси. Это поле является тормозящим для носителей, пришедших через
обедненный слой при прямом напряжении, и поэтому препятствует уходу
инжектированных носителей от границы обедненного слоя, заставляя их
компактнее концентрироваться зи границы. При подаче на диод обратного
напряжения (как и в обычном диоде) происходит рассасывание накопленного в
базе заряда, но при этом внутреннее электрическое поле уже будет
способствовать дрейфу неосновных носителей к обедненному слою перехода. В
момент t1, когда концентрация избыточных носителей на границах перехода
спадает до нуля, оставшийся избыточный заряд неосновных носителей в базе
становится очень малым, а, следовательно, оказывается малым и время t2
спадания обратного тока до значения I0.
[pic]
Рисунок 2.3 Временные диаграммы тока через импульсный диод.
2.5 Варикапы
Варикапом называется полупроводниковый диод, используемый в качестве электрически управляемой емкости с достаточно высокой добротностью в диапазоне рабочих частот. В нем используется свойство p-n-перехода изменять барьерную емкость под действием внешнего напряжения (рисунок 2.4).
Основные параметры варикапа: номинальная емкость СН при заданном номинальным напряжением UН (обычно 4 В ), максимальное обратное напря- жение Uобр max и добротность Q.
Для увеличения добротности варикапа используют барьер Шоттки; эти варикапы имеют малое сопротивление потерь, так как в качестве одного из слоев диода используется металл.
[pic]
Рисунок 2.4 Зависимость емкости варикапа от напряжения.
Основное применение варикапов - электрическая перестройка частоты колебательных контуров. В настоящее время существует несколько разновидностей варикапов, применяемых в различных устройствах непрерывного действия. Это параметрические диоды, предназначенные для усиления и генерации СВЧ-сигналов, и умножительные диоды, предназначенные для умножения частоты в широком диапазоне частот. Иногда в умножительных диодах используется и диффузионная емкость.
Рекомендуем скачать другие рефераты по теме: банк курсовых, россия диплом, реферат республика беларусь.
Категории:
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата