Лазерные оптико-электронные приборы
| Категория реферата: Рефераты по радиоэлектронике
| Теги реферата: конспект подготовительная группа, quality assurance design patterns системный анализ
| Добавил(а) на сайт: Sobolev.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
. эластичность (минимальный радиус изгиба 2 MM);
. механическая прочность (выдерживает нагрузку на разрыв примерно 7 кг);
. отсутствие взаимной интерференции (перекрестных помех типа известных в телефонии "переходных разговоров");
. безындукционность (практически отсутствует влияние электромагнитной индукции, а следовательно, и отрицательные явления, связанные с грозовыми разрядами, близостью к линии электропередачи, импульсами тока в силовой сети);
. взрывобезопасность (гарантируется абсолютной неспособностью волокна быть причиной искры);
. высокая электроизоляционная прочность (например, волокно длиной 20 см выдерживает напряжение до 10000 B);
. высокая коррозионная стойкость, особенно к химическим растворителям, маслам, воде.
В области оптической связи наиболее важны такие достоинства волокна, как широкополосность и малые потери, причем в строительстве внутригородских сетей связи наряду с этими свойствами особое значение приобретают малый диаметр и отсутствие взаимной интерференции, а в электрически неблагоприятной окружающей среде — безындукционность. Последние же три свойства в большинстве случаев здесь не играют какой-либо заметной роли.
В практике использования волоконно-оптических датчиков имеют наибольшее значение последние четыре свойства. Достаточно полезны и такие свойства, как эластичность, малые диаметр и масса. Широкополосность же и малые потери значительно повышают возможности оптических волокон, но далеко не всегда эти преимущества осознаются разработчиками датчиков. Однако, с современной точки зрения, по мере расширения функциональных возможностей волоконно-оптических датчиков в ближайшем будущем эта ситуация понемногу исправится.
Как будет показано ниже, в волоконно-оптических датчиках оптическое волокно может быть применено просто в качестве линии передачи, а может играть роль самого чувствительного элемента датчика. В последнем случае используются чувствительность волокна к электрическому полю (эффект Керра), магнитному полю (эффект Фарадея), к вибрации, температуре, давлению, деформациям (например, к изгибу). Многие из этих эффектов в оптических системах связи оцениваются как недостатки, в датчиках же их появление считается скорее преимуществом, которое следует развивать.
Следует также отметить, что оптические волокна существенно улучшают характеристики устройств, основанных на эффекте Саньяка.
Классификация волоконно-оптических датчиков и примеры их применения
Современные волоконно-оптические датчики позволяют измерять почти все.
Например, давление, температуру, расстояние, положение в пространстве, скорость вращения, скорость линейного перемещения, ускорение, колебания, массу, звуковые волны, уровень жидкости, деформацию, коэффициент
преломления, электрическое поле, электрический ток, магнитное поле, концентрацию газа, дозу радиационного излучения и т.д.
Если классифицировать волоконно-оптические датчики с точки зрения
применения в них оптического волокна, то, как уже было отмечено выше, их
можно грубо разделить на датчики, в которых оптическое волокно используется
в качестве линии передачи, и датчики, в которых оно используется в качестве
чувствительного элемента. Как видно из таблицы 1, в датчиках типа "линии
передачи" используются в основном многомодовые оптические волокна, а в
датчиках сенсорного типа чаще всего — одномодовые.
Таблица 1. Характеристики волоконно-оптических датчиков
|Структура |Измеряемая |Используемое |Детектируемая |Оптическое |Параметры и |
| |физическая |физическое |величина |волокно |особенности |
| |величина |явление, свойство| | |измерений |
|Датчики с оптическим волокном в качестве линии передачи |
|Проходящего типа |Электрическое |Эффект Поккельса |Составляющая |Многомодовое |1... 1000B; |
| |напряжение, | |поляризация | |0,1...1000 В/см |
| |напряженность | | | | |
| |электрического | | | | |
| |поля | | | | |
|Проходящего типа |Сила |Эффект Фарадея |Угол поляризации |Многомодовое |Точность (1% при |
| |электрического | | | |20...85( С |
| |тока, | | | | |
| |напряженность | | | | |
| |магнитного поля | | | | |
|Проходящего типа |Температура |Изменение |Интенсивность |Многомодовое |-10...+300( С |
| | |поглощения |пропускаемого | |(точность (1( С) |
| | |полупроводников |света | | |
|Проходящего типа |Температура |Изменение |Интенсивность |Многомодовое |0...70( С |
| | |постоянной |пропускаемого | |(точность (0,04( |
| | |люминесценции |света | |С) |
|Проходящего типа |Температура |Прерывание |Интенсивность |Многомодовое |Режим "вкл/выкл" |
| | |оптического пути |пропускаемого | | |
| | | |света | | |
|Проходящего типа |Гидроакустическое|Полное отражение |Интенсивность |Многомодовое |Чувствительность |
| |давление | |пропускаемого | |... 10 мПа |
| | | |света | | |
|Проходящего типа |Ускорение |Фотоупругость |Интенсивность |Многомодовое |Чувствительность |
| | | |пропускаемого | |около 1 мg |
| | | |света | | |
|Проходящего типа |Концентрация газа|Поглощение |Интенсивность |Многомодовое |Дистанционное |
| | | |пропускаемого | |наблюдение на |
| | | |света | |расстоянии до 20 |
| | | | | |км |
|Отражательного |Звуковое давление|Многокомпонентная|Интенсивность |Многомодовое |Чувствительность,|
|типа |в атмосфере |интерференция |отраженного света| |характерная для |
| | | | | |конденсаторного |
| | | | | |микрофона |
|Отражательного |Концентрация |Изменение |Интенсивность |Пучковое |Доступ через |
|типа |кислорода в крови|спектральной |отраженного света| |катетер |
| | |характеристики | | | |
|Отражательного |Интенсивность |Изменение |Интенсивность |Пучковое |Неразрушающий |
|типа |СВЧ-излучения |коэффициента |отраженного света| |контроль |
| | |отражения жидкого| | | |
| | |кристалла | | | |
|Антенного типа |Параметры |Излучение |Интенсивность |Многомодовое |Длительность |
| |высоковольтных |световода |пропускаемого | |фронта до 10 нс |
| |импульсов | |света | | |
|Антенного типа |Температура |Инфракрасное |Интенсивность |Инфракрасное |250...1200( С |
| | |излучение |пропускаемого | |(точность (1%) |
| | | |света | | |
|Датчики с оптическим волокном в качестве чувствительного элемента |
|Кольцевой |Скорость вращения|Эффект Саньяка |Фаза световой |Одномодовое |>0,02 (/ч |
|интерферометр | | |волны | | |
|Кольцевой |Сила |Эффект Фарадея |Фаза световой |Одномодовое |Волокно с |
|интерферометр |электрического | |волны | |сохранением |
| |тока | | | |поляризации |
|Интерферометр |Гидроакустическое|Фотоупругость |Фаза световой |Одномодовое |1...100 рад(атм/м|
|Маха-Цендера |давление | |волны | | |
|Интерферометр |Сила |Магнитострикция |Фаза световой |Одномодовое |Чувствительность |
|Маха-Цендера |электрического | |волны | |10-9 А/м |
| |тока, | | | | |
| |напряженность | | | | |
| |магнитного поля | | | | |
|Интерферометр |Сила |Эффект Джоуля |Фаза световой |Одномодовое |Чувствительность |
|Маха-Цендера |электрического | |волны | |10 мкА |
| |тока | | | | |
|Интерферометр |Ускорение |Механическое |Фаза световой |Одномодовое |1000 рад/g |
|Маха-Цендера | |сжатие и |волны | | |
| | |растяжение | | | |
|Интерферометр |Гидроакустическое|Фотоупругость |Фаза световой |Одномодовое |— |
|Фабри-Перо |давление | |волны | | |
| | | |(полиинтерференци| | |
| | | |я) | | |
|Интерферометр |Температура |Тепловое сжатие и|Фаза световой |Одномодовое |Высокая |
|Фабри-Перо | |расширение |волны | |чувствительность |
| | | |(полиинтерференци| | |
| | | |я) | | |
|Интерферометр |Спектр излучения |Волновая |Интенсивность |Одномодовое |Высокая |
|Фабри-Перо | |фильтрация |пропускаемого | |разрешающая |
| | | |света | |способность |
|Интерферометр |Пульс, скорость |Эффект Доплера |Частота биений |Одномодовое, |10-4...108 м/с |
|Майкельсона |потока крови | | |многомодовое | |
|Интерферометр на |Гидроакустическое|Фотоупругость |Фаза световой |С сохранением |Без опорного |
|основе мод с |давление | |волны |поляризации |оптического |
|ортогональной | | | | |волокна |
|поляризацией | | | | | |
|Интерферометр на |Напряженность |Магнитострикция |Фаза световой |С сохранением |Без опорного |
|основе мод с |магнитного поля | |волны |поляризации |оптического |
|ортогональной | | | | |волокна |
|поляризацией | | | | | |
|Неинтерферометрич|Гидроакустическое|Потери на |Интенсивность |Многомодовое |Чувствительность |
|еская |давление |микроизгибах |пропускаемого | |100 мПа |
| | |волокна |света | | |
|Неинтерферометрич|Сила |Эффект Фарадея |Угол поляризации |Одномодовое |Необходимо |
|еская |электрического | | | |учитывать |
| |тока, | | | |ортогональные |
| |напряженность | | | |моды |
| |магнитного поля | | | | |
|Неинтерферометрич|Скорость потока |Колебания волокна|Соотношение |Одномодовое, |>0,3 м/с |
|еская | | |интенсивности |многомодовое | |
| | | |между двумя | | |
| | | |модами | | |
|Неинтерферометрич|Доза |Формирование |Интенсивность |Многомодовое |0,01...1,00 Мрад |
|еская |радиоактивного |центра |пропускаемого | | |
| |излучения |окрашивания |света | | |
|Последовательного|Распределение |Обратное |Интенсивность |Многомодовое |Разрешающая |
|и параллельного |температуры и |рассеяние Релея |обратного | |способность 1 м |
|типа |деформации | |рассеяния Релея | | |
|[pic] |Рис. 5. | |[pic] |Рис. 7. |
| |Волоконно-опти| | |Волоконно-оптиче|
| |ческий датчик | | |ский датчик |
| |проходящего | | |антенного типа. |
| |типа. | | | |
|[pic] |Рис. 6. |
| |Волоконно-оптиче|
| |ский датчик |
| |отражательного |
| |типа. |
Краткая история исследований и разработок
В истории волоконно-оптических датчиков трудно зафиксировать какой- либо начальный момент, в отличие от истории волоконно-оптических линий связи. Первые публикации о проектах и экспериментах с измерительной техникой, в которой использовалось бы оптическое волокно, начали появляться с 1973 г., а во второй половине 1970-х годов их число значительно увеличилось. В 1978 году Нэмото Тосио предложил общую классификацию волоконно-оптических датчиков (рис. 4.), которая мало отличается от современной. С наступлением 1980-х годов история развития волоконно- оптических датчиков обрастает значительными подробностями.
Заключение
|[pic] |Рис.4. Классификация|
| |основных структур |
| |волоконно-оптических|
| |датчиков: |
| |а) с изменением |
| |характеристик |
| |волокна (в том числе|
| |специальных волокон)|
| | |
| |б) с изменением |
| |параметров |
| |передаваемого света |
| |в) с чувствительным |
| |элементом на торце |
| |волокна |
Основными элементами волоконно-оптического датчика, как можно заметить из табл. 1, являются оптическое волокно, светоизлучающие (источник света) и светоприемные устройства, оптический чувствительный элемент. Кроме того, специальные линии необходимы для связи между этими элементами или для формирования измерительной системы с датчиком. Далее, для практического внедрения волоконно-оптических датчиков необходимы элементы системной техники, которые в совокупности с вышеуказанными элементами и линией связи образуют измерительную систему.
Список литературы
Окоси Т. и др. Волоконно-оптические датчики.
Оглавление
Вступление 2
Волоконно-оптические датчики 2
Рекомендуем скачать другие рефераты по теме: решебник 11, конспект урока по математике, шпаргалки скачать бесплатные шпаргалки.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата