Матричные фотоприемники
| Категория реферата: Рефераты по радиоэлектронике
| Теги реферата: диплом шаблон, контрольные за 1 полугодие
| Добавил(а) на сайт: Valevach.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
Постоянная времени характеризует инерционность прибора и влияет на вид его частотной характеристики.
При включении и выключении света фототок возрастает до максимума (рис.
8 приложения) и спадает до минимума не мгновенно. Характер и длительность
кривых нарастания и спада фототока во времени существенно зависят от
механизма рекомбинации неравновесных носителей в данном материале, а также
от величины интенсивности света. При малом уровне инжекции нарастание и
спад фототока во времени можно представить экспонентами с постоянной
времени (, равной времени жизни носителей в полупроводнике. В этом случае
при включении света фототок iф будет нарастать и спадать во времени по
закону
iф = Iф (1 – e – t / (); iф = Iф e – t / (,
(8)
где Iф – стационарное значение фототока при освещении.
По кривым спада фототока во времени можно определить время жизни ( неравновесных носителей.
[pic]
4.4 Изготовление фоторезисторов
В качестве материалов для фоторезисторов широко используются сульфиды, селениды и теллуриды различных элементов, а также соединения типа AIIIBV. В
инфракрасной области могут быть использованы фоторезисторы на основе PbS,
PbSe, PbTe, InSb, в области видимого света и ближнего ультрафиолета – CdS.
[pic]
4.5 Применение фоторезисторов
В последние годы фоторезисторы широко применяются во многих отраслях науки и техники. Это объясняется их высокой чувствительностью, простотой конструкции, малыми габаритами и значительной допустимой мощностью рассеяния. Значительный интерес представляет использование фоторезисторов в оптоэлектронике
5.1 Устройство и основные узлы фотоэлектронного умножителя
Фотоэлектронный умножитель (ФЭУ) . очень распространенный и во
многих случаях незаменимый детектор излучения. Он позволяет регистрировать
и
предельно слабые и довольно интенсивные потоки. От единиц до 1010? 1012
фотонов в секунду. Постоянная времени . порядка 10–8?10–10 с, т.е.
допускает
весьма высокие частоты модуляции. Может быть размещен на воздухе и в
вакууме. На выходе дает легко измеримый сигнал. Все это с лихвой
компенсирует
неудобства, связанные с необходимостью использования высоковольтных блоков
питания (0.5?2.5 кВ) и довольно большими габаритами ФЭУ.
Устройство и основные узлы фотоэлектронного умножителя
[pic]
Схематичное изображение
устройства ФЭУ.
Пояснения в тексте.
Схема ФЭУ приведена на рис. (этот и некоторые другие рисунки
воспроизведены из [1]). Фотоэлектронный умножитель состоит из фотокатода 1, катодной камеры 1–3, динодной системы 3–14 и анодного узла 14–16, размещенных внутри вакуумного объема. Световой поток ? поглощается
фотокатодом, эмиттирующим в вакуум электроны. В электростатическом поле, создаваемом электродами катодной камеры, электроны ускоряются и
фокусируются на первый динод (3). Ускоренный первичный электрон способен
выбить с поверхности несколько вторичных, медленных1. Умноженные на первом
диноде, вторичные электроны ускоряются и фокусируются на второй динод.
Далее этот процесс повторяется на всех каскадах и с последнего динода
усиленный электронный поток собирается анодом. Каждый динод работает и
анодом, собирая электроны с предыдущего, и катодом, эмиттируя усиленный
поток. Отсюда и название . динод.
Фотокатод
Конструкция каждого ФЭУ должна обеспечить оптимальные условия
попадания светового излучения на фотокатод (оптический вход ФЭУ), поэтому
применяются различные геометрические расположения фотокатода относительно
оси вакуумной колбы и различные материалы входных окон.
Для регистрации несфокусированного излучения используется торцевой
оптический вход. . В этом случае ПОЛУПРОЗРАЧНЫЙ
ФОТОКАТОД, работающий .на просвет. (излучение попадает на фотокатод со
стороны подложки), формируется при изготовлении в виде тонкой пленки
непосредственно на плоском входном окне. Диаметр фотокатода может
превышать 250 мм, но наиболее широко применяются ФЭУ с диаметрами рабочей
площади от 5 до 50 мм.
Сфокусированные световые пучки можно регистрировать и с фотокатодом
малой площади, в том числе . работающим .на отражение. (излучение попадает
на фотокатод со стороны вакуума). Входное окно при этом располагается или
на
торце, или на боковой стенке колбы.
В этом случае мы имеем МАССИВНЫЙ ФОТОКАТОД, формируемый на
металлической, т.е. хорошо проводящей поверхности. Он имеет существенные
преимущества перед полупрозрачным и по эмиссионным свойствам и, главное, по
электрическим. Дело в том, что материал фотокатода . полупроводник с
невысокой и сильно зависящей от температуры проводимостью. Электрод к
полупрозрачному фотокатоду может быть подведен только по периферии, так
что при больших интенсивностях света и соответственно больших токах эмиссии
проводимость вдоль тонкой пленки от периферии к центру может оказаться
недостаточной, особенно если фотокатод придется охлаждать для уменьшения
темнового тока. В массивном фотокатоде ток от металлического электрода к
поверхности течет не вдоль, а поперек слоя и ограничений по величине
фототока
практически не возникает.
Катодная камера
Катодная камера ФЭУ образуется поверхностями фотокатода и первого
динода, а также расположенными между ними электродами, форма и
распределение потенциалов на которых определяют ее электронно-оптические
свойства. У неё две функции: вытягивание электронов с фотокатода и
фокусировка их на первый динод. Отсюда и характеристические параметры.
5.2 Принцип работы и режимы использования ФЭУ
Фотоэлектронный умножитель . электровакуумный прибор, преобразующий поток падающего на него излучения (в ультрафиолетовой, видимой, ближней инфракрасной областях спектра) в электронный поток в
вакууме, с последующим его усилением. При этом существенно, что усиление
электронного потока происходит в процессе вторичноэлектронной эмиссии.
Шумовые характеристики такого усилителя много лучше, чем у любого
твердотельного (в котором преобразуются электронные потоки внутри твердого
тела), ибо каждый акт появления в потоке нового электрона требует
преодоления
энергетического барьера, много превышающего kT. Энергия связи электронов в
твердом теле (термоэлектронная работа выхода) обычно превышает 4 эВ. Для
фотокатодов ФЭУ, работающих в длинноволновой области, разработаны
специальные сложные системы с предельно малой работой выхода, порядка 1 эВ.
Но и это много больше kТ, равного при комнатной температуре ~ 0.025 эВ.
5.3 Характеристики ФЭУ
Спектральная характеристика
Спектральная область чувствительности ФЭУ ограничивается с
длинноволновой стороны порогом чувствительности фотокатода, а с
коротковолновой . границей пропускания оптического окна. Наиболее часто в
ФЭУ используются следующие окна:
Материал Область пропускания
Стекло ?>320 нм
Увиолевое стекло
(без примесей Fe)
?>180.200 нм
Кварцевое стекло ?>150 нм
Фтористый магний,
MgF2
?>110 нм
Во всей видимой области спектра (400.700 нм) можно работать и со
стеклянным окном. Увиолевое позволяет охватить всю область ближнего
ультрафиолета, до так называемой вакуумной ультрафиолетовой (ВУФ) области1.
ФЭУ с кварцевыми окнами имеют смысл и при работе не в вакуумном УФ, так
как кварц более прозрачен, чем увиоль. Окна из MgF2 незаменимы в ВУФ. Этот
материал имеет практически рекордную область прозрачности (уступает только
LiF . 105 нм), но имеет хорошие механические свойства, спаивается со
стеклом, негигроскопичен. У чистого MgF2 довольно резкая граница пропускания.
Практически рабочая область простирается с ним до h ? = 11 эВ (112 нм).
Дальше
просто нет прозрачных веществ, но при таких энергиях фотонов фотоэмиссия
идет довольно эффективно почти из всех материалов, так что в более
коротковолновой области можно использовать .открытые. умножители . то же, что динодные системы ФЭУ, но изготовлены без баллона и помещаются
непосредственно в вакуумную камеру экспериментальной установки. Если
освещать первый динод, то получится ФЭУ с вполне приличными
характеристиками и темновыми токами порядка 1 электрона в секунду (с
первого
динода).
Чувствительность фотокатода удобнее всего характеризовать
величиной квантового выхода фотоэмиссии Yк(h?) или квантовой
эффективностью К?. Это . безразмерные величины, равные отношению числа
эмиттированых электронов к числу поглощенных (или упавших) квантов света.
Yк(h?) или К? далеко не постоянны в рабочей области. Они отличны от нуля
только при h? ? h?0 = Iph, называемой порогом, или красной границей
фотоэффекта, или фотоэлектрической работой выхода. При продвижении в
коротковолновую сторону Yк(h?) быстро растет, пропорционально exp[Const
?(h?
– h?0)]. Величина Const зависит от типа материала и конструкции фотокатода.
Обычно фотокатоды . сложные двух- или многослойные системы, в которых
1 Кислород воздуха эффективно поглощает излучение, начиная примерно со
180.190 нм. Более
коротковолновая область требует вакуумирования приборов, отсюда и название.
приняты специальные меры к уменьшению поверхностного потенциального
барьера.
Рис.. Спектральные [pic]
характеристики
различных
фотокатодов фирмы
RCA (США):
1. сурьмяно-цезиевого;
2. оксидного;
3. мультищелочного;
4.6. сложных
фотокатодов с
отрицательным
сродством к
электрону.
K?. квантовая
эффективность
фотокатода
Наилучшими свойствами обладают так называемые фотокатоды с
отрицательным сродством к электрону . полупроводниковые системы, в
которых возбужденный в объеме фотоэлектрон выходит в вакуум без
дополнительного потенциального барьера. В них Yк(h?) быстро достигает
максимального значения, иногда более 0,5, и остается примерно постоянным в
относительно широкой области. Спектральная характеристика ФЭУ с такими
катодами может быть близка к П-образной. . В общем же случае
можно ожидать самых разных форм спектральной зависимости чувствительности, в том числе и с выраженной структурой, как у оксидного фотокатода .
Для технических целей часто используется такая характеристика ФЭУ, как
спектральная чувствительность фотокатода. почти то же, что квантовый
выход, но отнесена к энергии падающего излучения, а не к числу квантов, и
приводится в единицах А/Вт. Например, для ФЭУ-130 (SbCsK-фотокатод, спектральная область 200.650 нм, максимум чувствительности . 400…420 нм)
паспортная спектральная чувствительность на длине волны 410 нм (h? = 3.024
эВ) равна 0,03 А/Вт, т.е. квантовый выход фотоэмиссии Yк(3 эВ) = 0.091.
Традиционно приводится и светотехническая характеристика .
чувствительность фотокатода (интегральная, не спектральная), измеряемая в
единицах А/лм.
На рис. 2.7.8 приведены спектральные характеристики ряда ФЭУ
американской фирмы RCA, имеющих стеклянные или увиолевые окна.
Большинство отечественных ФЭУ имеют характеристики типа 1.3.
Все фотокатоды по спектральной характеристике грубо можно разделить на
три группы:
. инфракрасные (оксидный катод, порог . 1,2 мкм);
. УФ-видимые (сурьмяно-цезиевый и мультищелочные катоды с порогом
650.850 нм);
. .солнечно-слепые. или просто .слепые., нечувствительные к видимому
или даже ближнему УФ-излучению. Обычно их фотокатоды . металлы или
простые двойные соединения. Например, полупрозрачный CsJ-фотокатод на окне
из MgF2 чувствителен в области 112.210 нм (11.0.5.9 эВ), причем на 210 нм
его чувствительность составляет всего 1% от максимальной (ФЭУ-154).
В заключение отметим, что для каждого эксперимента нужно специально
подбирать ФЭУ. Спектральная характеристика не должна простираться далеко в
длинноволновую область, иначе будут чрезмерны термоэмиссионные темновые
токи с фотокатода, пропорциональные exp(–ФT/kT). По этой причине ФЭУ с
оксидным катодом применяют только в специальных случаях, когда необходима
длинноволновая граница чувствительности. Если нужно работать только в
ультрафиолете, предпочтение отдают сурьмяно-цезиевым или солнечно-слепым
фотокатодам.
5.6Область приминения
Применений ФЭУ (оптические дальномеры, лазерные локаторы, астронавигационная аппаратура и т. п.)
6.2Метод вывода информации с помощью фотоприёмных матриц
Матрица фотоприёмников (фотоматрица) служит для преобразования оптического
изображения в электрические сигналы, причём каждый элемент функционирует
как пороговый детектор, указывающий наличие или отсутствие светового
сигнала в соответствующей позиции.
Различают два режима работы фотоприёмников: режим непосредственного отсчета
и режим накопления заряда. В первом случае выходной электрический сигнал
фотоприёмника в каждый момент времени пропорционален интенсивности
падающего на него оптического сигнала, а во втором - полному световому
потоку, падающему за время накопления. Так как мощность оптического
сигнала, поступающего на вход отдельного элемента фотоматрицы, очень мала, то работа фотоприемников в режиме накопления заряда предпочтительнее.
В последнее время при разработке фотоматриц наблюдается тенденция
объединения фотоприемников с элементами транзисторной памяти. При этом к
выходным сигналам фотоприемников предъявляется единственное требование -
устанавливать триггер, являющийся элементом памяти, в нужное состояние.
|[pic]
[pic]
Слева.Фрагмент фотоприёмной матрицы 128X128 с In столбами на каждом
элементе.
Рекомендуем скачать другие рефераты по теме: анализ курсовой работы, курсовые работы, класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата