Радиолокационный приемник сантиметрового диапазона
| Категория реферата: Рефераты по радиоэлектронике
| Теги реферата: понятие реферата, предмет культурологии
| Добавил(а) на сайт: Гурий.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата
5.1. Антенный переключатель
Одним из основных узлов РЛП является антенный переключатель (АП).Антенные
переключатели предназначены для коммутации передатчика к антенне на
время прихода отраженных или ответных сигналов. Они должны: обеспечить
уменьшение до минимума мощности излучаемого зондирующего импульса
просачивающегося на на вход приемника; быть быстродействующими т.к. с
увеличением времени срабатывания возрастает вероятность пробоя входных
цепей приемника, а с увеличением времени востановления увеличивается
минимальная дальность РЛС (мертвая зона обзора на малых расстояниях от
РЛС); иметь минимальные потери мощности при излучении зондирующего импульса
и особенно при приеме отраженного от цели сигнала; обладать большим сроком
службы и высокой надежностью. Коммутационные АП состоят настроенных
отрезков линий и газоразрядных приборов (разрядников), изменяющих
сопротивление под действием мощных СВЧ сигналов. Разрядники включают в
фидерный тракт РЛС параллельно или последовательно.
АП на необратимых элементах применяют в РЛС сантимитрового диапазона. В качестве необратимых элементов используют фидерные вентили и циркуляторы.
При расположении феррита волноводе , передаваемая по волноводу
электромагнитная энергия. В зависимости от направления ее движения либо
поглащается либо проходит практически без потерь. Феррит помещается в
сильное поле постоянного магнита. При этом ферромагнитный резонанс
наступает только при движении электромагнитной волны в одном направлении.
При резонанасе практически вся СВЧ энергия в волноводе поглащается
вентилем.
Выбор типа АП зависит отмощности излучаемого зондирующего импульса. При мощности импульса 100-150 КВт АП реализуют путем последующего соединения ферритового циркулятора, газового разрядника и диодного резонансного СВЧ ограничителя (рис. )
При мощности 1-2 КВт газовый разрядник не вводят в состав АП.
В АП (рис. ) используют два последовательно соединенных
циркулятора Ц1 и Ц2. Сигнал от передатчика поступает на плече 1
циркулятора Ц1 и через плече 2 подается в антенну; при этом на выход
плеча 3 сигнал от передатчика проходит с существенным ослаблением (13- 25
дб). Далее сигнал с плеча 3 циркулятора Ц1 подается через циркулятор
Ц2 на разрядник Р, уменьшая его сопротивление до ноля. При этом СВЧ
сигнал отражается от разрядника к плечу 2 циркулятора Ц2 и поглощается в
согласованной нагрузке R. Зажигание разрядника Р спустя некоторое время (
с) после изменения зондирующего импульса. Выделяемая за это время энергия
может вывести из строя последующие каскады приемника. Для предотвращения
этого в схеме АП предусматривается СВЧ ограничитель, подключенный к
основной линии в т.А через отрезок линии l = l/2. Ограничитель состоит из
последовательносоединенных диода Д и короткозамкнутого шлейфа длинной l2
с индуктивным реактивным сопротивлением, параллельно которым подключен
разомкнутый емкостной шлейф длиной l1. При сигнале высокого уровня диод Д
эквивалентен цепи из последовательносоединенных сопротивления и
индуктивности.при этом между т.В и подложкой образуется параллельный
резонансный контур,сопротивление которого при резонансе велико. Значит, четвертьволновый отрезок линии длинной l при высоком уровне сигнала
работает практически в режиме холостого хода; входное сопротивление линии
равно 0. Значит, сигнал просачивающийся в ограничитель отражается обратно в
циркулятор Ц2. Полезный сигнал, отраженный от цели, поступает от антенны на
плече 2 циркулятора Ц1, практически без ослаблений передается на плече 3
циркулятора Ц1 и далее через плечи 1 и 2 циркулятора Ц2 на разрядник Р.
Мощность отраженного сигнала недостаточна для зажигания разрядника, вследствие чего принятый антенной сигнал передается по основной линии в
последующие каскады приемника. Для сигнала малого уровня отрезок линии
длинной l работает практически в режиме К.З.; входное сопративление этой
линии равно бесконечности и энергия принятого сигнала проходит в
последующие каскады РЛП практически без ослабления.
5.2. Разрядники защиты приемника
Защиту триодов входного каскада РЛП отперегрузки и повреждения СВЧ сигналами (от собственного передатчика РЛС или от внешних источников помех) в полосе рабочих частот, как уже указывалось, обычно осуществляют разрядником защиты приемника (РЗП) и ограничителем СВЧ-мощности на полупроводниковых диодах.
РЗП описываются двумя группами параметров: параметрами низкого
уровня мощности, характеризующими свойства РЗП в режиме приема слабых
сигналов (СВЧ разряда нет), и параметрами высокого уровня мощности
характеризующими его защитные свойства при воздействии на него мощных
импульсов СВЧ (происходит СВЧ разряд).
К параметрам низкого уровня мощности относятся:
. полоса рабочих частот Праб= fmax - fmin, выраженная в процентах по отношению к средней частоте рабочего диапазона Праб, % ;
. потери в режиме приема Lпр, дБ;
. коэффициент стоячей волны КСВ.
Основными параметрами высокого уровня мощности являются:
. максимально допустимая импульсная мощность Pи(кВт)на входе РЗП;
. мощность зажигания Pзаж (мВт) - максимальная импульсная мощность, на выход ЗП;
. энергия пика Wп (Дж) и мощность плоской части Pпл (мВт) СВЧ импульса, просачивающаяся через РЗП во время его горения;
. время восстановления РЗП tв (мкс),
. характеристика времени tG после окончания вх.импульса СВЧ, в течение которого потери снизятся до условной величины Lпр + G (дБ).
Диодный ограничитель, в отличае от РЗП, не требует никаких питающих
напряжений и поэтому обеспечивает защиту как при включенной, так и при
выключенной аппаратуре. Он характеризуется двумя состояниями: состоянием
пропускания при малой мощности сигнала, т.е. на низком уровне мощности
(потери пропускания Lпр малы), и при состоянием запирания при большой
мощности сигнала, т.е. на высоком уровне мощности (потери запирания Lзап
велики).
5.3. Входная цепь
В используемом диапазоне частот в силу особенностей несимметричных
полосковых волноводов [9] наиболее перспективно использование согласующих
цепей на микрополосковых линиях. Основными характеристиками микрополосковой
линии, сечение которой показано на ( рис.5.1.1, б) являются: волновое
сопротивление и эффективная диэлектрическая проницаемость, которые зависят
от толщины подложки Н, ширины микрополосковой линии Е, толщины
металлизированного слоя t и относительной диэлектрической проницаемости e.
Из соображений технологичности широкое применение в качестве полосовых
фильтров (ПФ) находит связанная система из резонансных полуволновых
разомкнутых резонаторов [3]:
рис.5.1.1
Такой ПФ (рис.5.1.1,а) образован рядом одинаковых параллельно связанных
линий (длина участка связи равна L0/4), и является наиболее употребительным
из-за отсутствия особо критичных размеров.
Основными исходными данными для проектирования такого полосового фильтра
являются:
частота сигнала, полоса пропускания приёмника, затухание в полосе
пропускания Lп, обычно принимаемое за 3 дБ, полоса заграждения Пз, определемая в нашем случае как Пз=4fпч=120 МГц, затухание на границах
полосы заграждения Lз=26 дБ, волновые сопротивления подводящих линий
W0=75 Ом.
При использовании для аппроксимации частотной характеристики фильтра
максимально плоских функций Баттерворта можем посчитать число элементов n
по формуле:
n=lg (Lз-1)/(Lп-1) / lg(Пз/Ппр)
n=lg (20-1) / (1,4-1) / lg(120/1,03) = 0,81
Округляем в большую сторону и получаем, что проектируемый ПФ должен
состоять из (n+1)=2 элементов.
Электрическая длинна li отрезков связанных линий всех звеньев фильтра
одинакова: li =L0/4, где L0- длина волны в линии на частоте fс: L0=f0/2e, e - эффективная диэлектрическая проницаемость среды в линии, равная для симметричной полосковой линии относительной диэлектрической проницаемости диэлектрика линии.
Для найденного значения n и заданного Lп=1,4 и Пп/f0=0,2 определяем (n+1)
коэффициент qi (табл. 3.4) [9], которые представляют собой перепады
характеристических сопротивлений ступенчатого перехода: q1=q3=833,56 q2=374123
Затем определяем величину переходных затуханий связанных звеньев (дБ):
Сi=10lg(qi+1)
q1=q3=833,56 q2=374123
C1=C3=29,2 дБ C2=55,7 дБ
Теперь по таблице 3.5 [ 9 ] определяем для каждого звена bi/d и
Si/d
b1/d=b3/d=0,993
S1/d=S3/d=3,08
5.4. Преобразователь частоты (смеситель)
Рекомендуем скачать другие рефераты по теме: лечение шпори, оформление доклада титульный лист, семейные реферат.
Категории:
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата