Материаловедение
| Категория реферата: Остальные рефераты
| Теги реферата: форма курсовой работы, конспект по математике
| Добавил(а) на сайт: Аверьян.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
К классу С относятся чисто неорганические материалы, совершенно без склеивающих или пропитывающих органических составов. Это слюда, стекло и стекловолокнистые материалы, кварц, асбест, микалекс, непропитанный асбоцемент, шифер, нагревостойкие (на неорганических связующих) миканиты и т.п. Из всех органических электроизоляционных материалов к классу нагревостойкости С относятся только политетрафторэтилен (фторопласт 4) и материалы на основе полиимидов (плёнки, волокна, изоляция эмалированных проводов и т.п.).
Для ряда диэлектриков, в особенности хрупких (стёкла, керамические
материалы и пр.), важна стойкость по отношению к резким сменам температуры
(термоударам), в результате которых в материале могут образоваться трещины.
2. Объясните механизм пробоя жидких диэлектриков.
Диэлектрик, находясь в электрическом поле, теряет свойства электроизоляционного материала, если напряжённость поля превысит некоторое критическое значение. Это явление называется пробоем диэлектрика, то есть нарушением его электрической прочности. Значение напряжения, при котором происходит пробой диэлектрика, называется пробивным напряжением, а соответствующее значение напряжённости поля – электрической прочностью диэлектрика.
Электрическая прочность определяется пробивным напряжением, отнесённым к току диэлектрика в месте пробоя:
,
где Uпр – пробивное напряжение, а h – толщина диэлектрика.
Пробой жидких диэлектриков происходит в результате ионизационных тепловых процессов. Одним из главных факторов, способствующих пробою, является наличие в них посторонних примесей.
Предельно чистые жидкости получить крайне трудно. Постоянными примесями в жидкостях являются вода, газы и твёрдые частицы.
Наличие примесей вызывает большие затруднения для создания точной теории пробоя этих веществ. Поэтому представления теории электрического пробоя применяют к жидкостям, максимально очищенным от примесей.
При высоких значениях напряжённости электрического поля может происходить вырывание электронов из металла электродов и разрушение молекул самой жидкости за счёт ударов заряженными частицами. При этом большая электрическая прочность жидких диэлектриков по сравнению с газообразными, объясняется значительно меньшей длиной свободного пробега электронов.
Пробой жидкостей, содержащих газовые включения, объясняется местным перегревом жидкости (за счёт энергии, выделяющейся в сравнительно легко ионизирующихся пузырьках газа), который приводит к образованию газового канала между электродами.
Наличие воды в жидком диэлектрике, даже в очень небольших количествах, сильно снижает его электрическую прочность. Вода при нормальной температуре не смешивается с жидким диэлектриком, а содержится в нём в виде мельчайших капелек. Под влиянием электрического поля эти капельки воды (сильно полярной жидкости) поляризуются и создают между электродами цепочки с повышенной проводимостью, по которым и происходит электрический пробой.
Наблюдается своеобразная зависимость электрической прочности жидкого диэлектрика, содержащего воду от температуры. При повышении температуры выше комнатной, вода переходит из состояния эмульсии в состояние молекулярного раствора, в котором она более слабо влияет на величину электрической прочности. Вследствие этого электрическая прочность жидкого диэлектрика, в частности трансформаторного масла, возрастает до некоторого максимума. А дальнейшее снижение электрической прочности объясняется явлениями кипения жидкости. При снижении температуры при условии, когда вода не успевает испариться из масла, электрическая прочность изменяется по той же кривой. В сухом масле, не содержащем воды, электрическая прочность не зависит от температуры в пределах до 80 оС, когда начинается кипение лёгких масляных фракций и образование большого количества пузырьков пара внутри жидкости.
Увеличение электрической прочности трансформаторного масла при низких температурах связывают с увеличением вязкости масла и меньшими значениями диэлектрической проницаемости льда по сравнению с водой.
Твёрдые вкрапления (сажа, волокна и т. п.) искажают электрическое поле внутри жидкости и также приводят к снижению электрической прочности диэлектрических жидкостей.
Очистка жидких диэлектриков, в частности масел, от примесей заметно повышает электрическую прочность. Так, например, неочищенное трансформаторное масло имеет электрическую прочность примерно 4 МВ/м; после тщательной очистки она повышается до 20 – 25 МВ/м.
На пробой жидких диэлектриков, как и газов, оказывает влияние форма электродов: с увеличением степени неоднородности электрического поля пробивное напряжение при одинаковых расстояниях снижается. В неоднородных электрических полях, так же как и в газах, может быть неполный пробой – корона. Сколь либо длительная корона в жидких диэлектриках недопустима, так как она вызывает разложение жидкости.
Так же к факторам, влияющим на электрическую прочность, следует отнести частоту тока. С увеличением частоты электрическая прочность жидких диэлектриков уменьшается.
3. Что происходит при контакте двух полупроводников с разным типом проводимости. Начертите вольт-амперную характеристику полупроводникового диода с кратким объяснением этой характеристики.
В электротехнике особое значение получила односторонняя электропроводность пластинки, состоящей из половинок с разными типами электропроводности (p и n). На этом принципе основано действие полупроводниковых диодов.
Электроды, на которые может быть подана определённая разность потенциалов, наложены на торцы пластинки.
Без создания электрического поля за счёт поданных на электроды потенциалов на границе между половинками с разными типами проводимости в так называемом электронно-дырочном переходе (или p – n-переходе) образуется тонкий запорный слой, порядка 10-5 см, через который не проходят ни электроны, ни «дырки». Механизм образования этого запорного слоя сводится к следующему физическому процессу.
В половинке с p-проводимостью концентрация «дырок» больше, чем в зоне с n-
проводимостью; в последней же имеется повышенная концентрация электронов.
Благодаря этому происходит диффузия «дырок» и электронов из одной половины
в другую, приводящая к появлению отрицательного заряда у p – n-перехода в
области с p-проводимостью и положительного заряда в области с n-
проводимостью. Эти заряды создают внутреннее диффузное поле, прекращающее
диффузию «дырок» и электронов через зону действия этого поля – через
запорный слой. При приложении к электродам разности потенциалов, когда на
электрод, присоединённый к половинке с p-проводимостью подсоединён
отрицательный, а к электроду половинки с n-проводимостью – положительный
полюс, создаваемое ими поле совпадает с диффузным полем, p – n-переход
остаётся запертым – ток проходить не будет.
При приложении разности потенциалов противоположных знаков внешнее поле будет направлено против диффузного, в результате чего через p – n-переход будут свободно проходить электроны и «дырки», полупроводник повышает электропроводность – через пластинку пройдёт ток, p – n-переход будет открыт.
Рекомендуем скачать другие рефераты по теме: реферат слово, русский язык 7 класс изложение.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата