Исторический очерк биохимии
| Категория реферата: Биология и химия
| Теги реферата: контрольная работа по математике класс, купить диплом высшее
| Добавил(а) на сайт: Bessonov.
Предыдущая страница реферата | 1 2 3
Они локализованы преимущественно в печени, где и происходит главным образом глюконеогенез. Значительно менее интенсивно этот процесс идёт в корковом веществе почек.
После того как в мышцах истощается запас глюкогена, основным источником пирувата становится аминокислоты, образующиеся после деградации белков. При этом более 30% аминокислот, поступающих из крови в печень, приходится на аланин – одну из глюкогенных аминокислот, углеродный скелет которой используется в печени как предшественник для синтеза глюкозы. Другим источником пирувата является лактат, который накапливается в интенсивно работающих мышцах в процессе анаэробного гликолиза, когда митохондрии не успевают реокислить накапливающийся НАДН. Лактат транспортируется в печень, где снова превращается в пируват, а затем в глюкозу и гликоген. Этот физиологический цикл называется циклом Кори (по имени его первооткрывателя). У цикла Кори две функции – сберечь лактат для последующего синтеза глюкозы в печени и предотвратить развитие ацидоза.
Энергетика обмена.
Обмен веществ (метаболизм) – это совокупность протекающих в живых организмах химических превращений, обеспечивающих их рост, жизнедеятельность, воспроизведение, постоянный контакт и обмен с окружающей средой. Благодаря обмену веществ происходит расщепление и синтез молекул, входящих в состав клеток, образование, разрушение и обновление клеточных структур и межклеточного вещества . Например, у человека половина всех тканевых белков расщепляется и строится заново в среднем в течении 80 суток, белки печени и сыворотки крови наполовину обновляются каждые 10 суток, а белки мышц – 180, отдельные ферменты печени – каждые 2 – 4 часа. Обмен веществ неотделим от процессов превращения энергии: потенциальная энергия химических связей сложных органических молекул в результате химических превращений переходит в другие виды энергии, используемой на синтез новых соединений, для поддержания структуры и функции клеток, температуры тела, для совершения работы и так далее. Все реакции обмена веществ и превращения энергии протекают при участии биологических катализаторов – ферментов. У самых разных организмов обмен веществ отличается упорядочностью и сходством последовательности ферментативных превращений, несмотря на большой ассортимент химических соединений, вовлекаемых в обмен. В тоже время для каждого вида характерен особый, генетическизакреплённый тип обмена веществ, обусловленный условиями его существования.
Обмен веществ складывается из двух взаимосвязанных, одновременно протекающих в организме процессов – ассимиляция и диссимиляция, или анаболизм и катаболизм. В ходе катаболических превращений происходит расщепление крупных органических молекул до простых соединений с одновременным выделением энергии, которая запасается в форме богатых энергией фосфатных связей, главным образом в молекуле АТФ и других богатых энергией соединений. Катаболические превращения обычно осуществляются в результате гидролитических и окислительных реакций и протекает как в отсутствии кислорода (анаэробный путь – гликолиз, брожение), так и при его участии (аэробный путь – дыхание). Второй путь эволюционно более молодой и в энергетическом отношении более выгодный. Он обеспечивает полное расщепление органических молекул до СО2 и Н2О. Разнообразные органические соединения в ходе катаболических процессов превращаются в органическое число небольших молекул (помимо СО2 и Н2О): углеводы – в трифосфаты и (или) пируват, жиры – в ацетил – КоА, пропионил – КоА, оксалоацетат, α – кетоглютарат, фумарат, сукцинат и конечные продукты азотистого обмена – мочевину, аммиак, мочевую кислоту и другие.
В ходе анаболических превращений происходит биосинтез сложных молекул из простых молекул – предшественников. Автотрофные организмы (зелёные растения и некоторые бактерии) могут осуществлять первичный синтез органических соединений из СО2 с использованием энергии солнечного света (фотосинтез) или энергии окисления неорганических веществ. Гетеротрофы синтезируют органические соединения только за счёт энергии и продуктов, образующихся в результате катаболических превращений. Исходным сырьём для процессов биосинтеза в этом случае служит небольшое число соединений, в том числе ацетил – КоА, сукцинил КоА, рибоза, пировиноградная кислота, глицерин, глицин, аспарагиновая, глутаминовая и другие аминокислоты. Каждая клетка синтезирует характерные для неё белки, жиры, углеводы и другие соединения. Например, глюкоген мышц синтезируется в мышечных клетках, а не доставляется кровью из печени. Как правило, синтез включает восстановительные этапы и сопровождается потреблением энергии.
Функции липидов.
Липиды (от греческого “липос” – жир) – низкомолекулярные органические соединения полностью или почти полностью нерастворимые в воде, могут быть извлечены из клеток животных, растений, и микроорганизмов неполярными органическими растворителями, такими как хлороформ, эфир, бензол.
Гидрофобность (или липофильность) является отличительным свойством этого класса соединения, хотя по природе химическому строению и структуре – они весьма разнообразны. В их состав входят спирты, жирные кислоты, азотистые соединения, фосфорная кислота, углеводы и другие. Следовательно, учитывая различия в химическом строении, функциях соединений, относящихся к липидам, дать единое определение для представителей этого класса веществ невозможно.
Роль липидов в процессе жизнедеятельности организма велика и разнообразна. К основным функциям липидов относятся структурная, энергетическая, резервная, защитная, регуляторная.
Структурная функция.
В комплексе с белками липиды являются структурными компонентами всех биологических мембран клеток, а следовательно, влияют на их проницаемость, участвуют в передаче нервного импульса, в создании межклеточного взаимодействия и других функциях биомембран.
Энергетическая функция.
Липиды являются наиболее энергоёмким “клеточным топливом”. При окислении 1г. жира выделяется 39 КДж энергии, что в два раза больше, чем при окислении 1г. углеводов.
Резервная функция.
Липиды являются наиболее компактной формой депонирования энергии в клетке. Они резервируются в адипоцитах – клетках жировой ткани. Содержание жира в организме взрослого человека составляет 6 – 10 кг.
Защитная функция.
Обладая выраженными термоизоляционными свойствами, липиды предохраняют организм от термических воздействий; жировая прокладка защищает тело и органы животных от механических и физических повреждений; защитные оболочки в растениях (восковой налёт на листьях и плодах) защищает от инфекции и излишней потери или накопления воды.
Регуляторная функция.
Некоторые липиды являются предшественниками витаминов, гормонов, в том числе гормонов местного действия – эйкозаноидов: простагландинов, тромбоксанов и лейкотриенов. Регуляторная функция липидов проявляется также в том, что от состава свойств, состояния мембранных липидов во многом зависит активность мембранно – связанных ферментов.
У бактерий липиды определяют таксономическую индивидуальность, дифференциацию видов, тип патогенеза и многие другие особенности. Нарушение липидного обмена у человека приводит к развитию таких патологических состояний, как атеросклероз, ожирение, метаболический ацидоз, желчнокаменная болезнь и других.
Список литературы
1 В.П. Комов., В.Н. Шведова “Биохимия” – М.:”Дрофа” 2004 г.
2 Гл. ред. М.С. Гиляров. Ред.кол.: А.А. Абаев, Г.Г. Винберг, Г.А. Гаварзин и др. “Биологический энциклопидический словарь” – М.: Современная энциклопедия 1986 г.
3 З.А. Власова “Биология. Пособие для поступающих в ВУЗ” – М.: Филологическое общество Слово “Эксмо” 2003 г.
4 Под ред. Пр. Бр.Батанова “Клиническая педиатрия”: София 1988г.
Скачали данный реферат: Eremej, Kodica, Rudin, Jubkin, Patrikij, Гибазов.
Последние просмотренные рефераты на тему: дипломная работа по экономике, решебники 10, реферат на тему мыло, доклад африка.
Категории:
Предыдущая страница реферата | 1 2 3