Морфофункциональный анализ организации моноподиальных колоний гидроидов с терминально расположенными зооидами
| Категория реферата: Биология и химия
| Теги реферата: ответ 4, баллов
| Добавил(а) на сайт: Победа.
1 2 3 4 | Следующая страница реферата
Морфофункциональный анализ организации моноподиальных колоний гидроидов с терминально расположенными зооидами на примере tubularia larynx ell. Et sol.
Марфенин Н. Н.
Отличительной чертой данного типа строения колоний является не прекращающееся после образования гидранта функционирование зоны роста, благодаря чему: 1) большая часть гидрантов колонии оказывается сосредоточенной в узком поверхностном слое” наиболее благоприятном для ловли добычи, и 2) оказывается возможным увеличение размеров гидрантов. Проведенный анализ позволяет считать, что к данному типу строения колонии относятся все Athecata, имеющие побеги.
У гидроидов известно четыре типа колоний (Наумов, 1960; Kuhn” 1914; Hyman, 1940), которые выделяют по характеру роста и ветвления (расположению зон роста и почкования). По степени усложнения они располагаются в ряд: стелющиеся колонии; моноподиальные с терминально расположенными зооидами; симподиальные и моноподиальные с терминально расположенными верхушками роста. Анализируемый в настоящей статье тип строения колонии—второй в приведенном ряду— занимает среднее положение по степени сложности наряду с симподиальными колониями. Однако если симподиальные колонии и моноподиальные с терминально расположенными верхушками роста представляют, несомненно, одну ветвь усложнения организации колониальных гидроидов, то моноподиальные колонии с зооидными зонами роста должны быть отнесены к другому направлению эволюции.
Морфофункциональный анализ помогает выявить особенности каждого из этих направлений. Однако прежде необходимо уточнить характеристику типа организации, который вслед за Кюном (Kuhn, 1914) принято называть “моноподиальные колонии с терминально расположенными гидрантами”, или, по Д. В. Наумову (I960), “моноподиальные колонии с зооидными зонами роста и почкования”. Это и является основной задачей данной работы. Вторая задача—попытаться определить специфику положения рода Tubularia в данном типе строения колонии.
По биологии и морфологии Tubularia имеется довольно много исследований. Однако, кроме нескольких работ (Agassix, 1862; Allman,, 1871; Mackic, 1966), они в основном касаются либо эмбриогенеза и морфогенеза (Ciamician, 1879; Lowe, 1926; Berrill, 1952; Fennhoff, 1978), либо оседания личинки (Pyefinch, Downing, 1949; Hawes, 1958), либо регенерации (Barth, 1944; Steinberg, 1954; Tardent, 1963), либо электрофизиологии, связанной с поведением гидрантов (Josephson, 1965, 1974). В результате строение колонии осталось описанным весьма фрагментарно.
Исследование было проведено в июле— сентябре 1978 г. на Беломорской биостанции Московского университета (Великая Салма Ругозерской губы Кандалакшского залива).
Автор благодарит своих коллег, с которыми он совершал погружения в подводный мир, за помощь в освоении методов подводных исследований.
Материал и методы
Tubularia larynx Ellis et Solander, 1786 относится к семейству Tubulariidae подотряда Athecata. В районе исследований на Белом море колонии были обнаружены по бокам желоба Великой Салмы на глубине около 20 м на ракушечнике.
С помощью легководолазной техники были проведены наблюдения за поведением гидрантов и положением колоний иа течении, распределением колоний по дну, характером сопутствующей фауны, особенно гидроидов, а также был осуществлен сбор необходимого материала.
В лаборатории колонии содержались в кристаллизаторах с аэрацией при различных температурах в диапазоне от 11° до 17°. Смену воды и кормление свежевылупившимися науплиусами Artemia осуществляли ежедневно. Методика культивирования соответствовала описанной нами ранее (Бурыкин с соавт., 1984).
Результаты
Строение колонии и его экологическое значение.
Заросли Т. larynx обычно имеют вид полусферического густого куста с радиусом около 5—10 см (рисунок, 1; см. также Allman, 1871). Хэйвс (Hawes, 1955) описывает колонии с высотой побегов до 17,5 см.
Поверхность такого куста сплошь покрыта гидрантами. Ближе к центру зарослей гидрантов значительно меньше. Крепится куст к субстрату нитевидной гидроризой, которая, однако, может занимать площадь во много раз меньшую, чем поверхность самого куста.
При первом рассмотрении куст кажется одной колонией. Однако это не соответствует действительности. Перед нами ассоциация множества разновозрастных колоний, которые возникли в результате оседания на перисарк старших колоний их личинок— актинул. Изучение начальных этапов формирования такой ассоциации помогает представить, как это происходит, и выяснить строение отдельной колонии.
Как известно, актинулы значительно отличаются по своей морфологии от типичных личинок кишечнополостных—планул. При их формировании сразу образуется венчик аборальных и зачатки оральных щупалец (Тихомиров, 1887). У актинул изначально нет ресничного эпителия (Van de Vyver, 1968), и поэтому они не плавают, а падают на дно. Я заметил, что венчик аборальных щупалец помогает им при скатывании с гидранта зацепиться за субстрат—часто за перисарк своей же или соседней колонии. Исследователи, специально изучавшие процесс оседания актинул, отмечают, что прикрепление личинки к субстрату происходит лишь через несколько часов, а часто и через сутки (Pyefinch, Downing, 1949; Hawes, 1958). В это время личинка действительно удерживается на субстрате своими аборальными щупальцами (Hawes, 1958).
Прикрепившись аборальным концом, актинула начинает расти (рисунок, 2). Завершается формирование гидранта, одновременно с его увеличением удлиняется его ножка, которая становится фактически стволом колонии. Рост ствола происходит в его дистальной части (зоне роста) — непосредственно под гидрантом. Эта особенность и послужила для выделения данного типа колоний — моноподиального с зооидньши зонами роста. Таким образом, гидрант, венчая собой ствол, все время перемещается по направлению роста последнего. Старые крупные гидранты вследствие этого оказываются на поверхности колонии, а не у ее основания.
По мере удлинения ствола его диаметр несколько возрастает. Ствол проросшей актинулы всего 0,12—0,18 мм в диаметре, а у взрослой колонии—до 0,5 мм. Гидранты также постепенно увеличиваются в размерах (таблица). Окончательные размеры ствола и гидрантов у Т. larynx существенно превосходят типичные для гидроидов. Получается, что за счет прочного кожистого перисарка и значительного диаметра ствол может до некоторых пределов противостоять течению, удерживая довольно тяжелые крупные гидранты высоко над субстратом.
Боковые ветви на стволе образуются, как правило, не ближе 8 мм от гидранта (рисунок, 3). Расстояния между боковыми ветвями на стволе непостоянные—в среднем около 4мм, но могут быть и в несколько раз больше. О слабой степени разветвленпости колонии свидетельствует также количественный показатель В/С — отношение числа всех ветвей в колонии к суммарной протяженности ее гидрофитона (ценосарка). Этот показатель для маленьких колоний с 50—100-мм гидрофитоном составлял всего около 0,1 ветви/мм, тогда как, например, у Obelia loveni он 0,25—0,45 ветви/мм (Марфенин, Косевич, 1984).
Диаметр боковой ветви исходно всегда меньше, чем у той, от которой она отходит, но по мере роста он, как и у ствола, постепенно возрастает. Для последующего анализа важно, что гидрант образуется не сразу, а лишь когда боковая ветвь вырастет до 3—5 мм, а то и больше. Следовательно, зона роста может временно находиться апикально, напоминая типичную верхушку роста столона у гидроидов. Принципиальное отличие ее от последней в том, что у верхушки роста столона зоной морфогенеза является ее проксимальная часть, в то время как у ветви Tubularia терминальная. В период дифференцировки гидранта дистальный конец ветви остается столоновидным, т. е. отсутствует расширение, столь характерное для Thccaphora. Поэтому и гидрант образуется первоначально очень малых размеров.
Tubularia larynx Ellis et Solander, 1786: 1— общий вид зарослей в форме полусферического куста; 2 — рисунок осевшей актинулы через сутки (А) и первичного гидранта, выросшего из нее, через неделю (В); 3 — схема строения небольшой колонии; 4 — схема перемещения гидроплазмы (стрелками) в ценосарке колонии (пунктиром изображен мезентерий); диаметр ствола завышен. Масштаб относится к 2
Размеры и вес гидранта у Т larynx, образовавшегося во взрослой колонии, на трех этапах его роста (выборка при взвешивании — 10 гидрантов)
Далее рост боковой ветви осуществляется так же, как и ствола, т. е. удлинение ее происходит непосредственно под гидрантом, а сам гидрант постепенно увеличивается в размерах. Со временем и боковая ветвь также начинает ветвиться. Определенной ориентации ветвления нет, хотя иногда ветви отходят преимущественно от одной стороны ствола, а иногда поочередно от противоположных. Возможны и другие варианты.
Первоначально боковая ветвь перпендикулярна к той, от которой она отходит, но затем она загибается вверх. Эксперименты с регенерировавшими кусками ствола показали, что переворачивание такой модельной колонии гидрантом вниз приводит по мере дальнейшего роста к изгибанию ствола вместе с венчающим его гидрантом вверх. Вследствие этой особенности большинство ветвей колонии оказывается ориентированной более-менее параллельно друг другу (рисунок, 3).
Скорости роста всех ветвей и ствола примерно одинаковы и составляли около 0,5 мм/сут при температуре 12°, что соответствует данным Маки (Mackie, 1966) для Т. сгосеа при 14°—1 мм/сут. Из-за сходства скоростей роста и определенного порядка образования ветвей на некотором расстоянии от апикально расположенного гидранта длина ветвей пропорционально возрастает в проксимальном направлении, а венчающие их гидранты оказываются примерно на одном уровне. Эта особенность морфологии и роста колонии у Т. larynx объясняет, почему в кусте гидранты расположены преимущественно на его поверхности или вблизи ее (рисунок, 7).
Рекомендуем скачать другие рефераты по теме: реферат на тему мыло, оформление дипломной работы.
Категории:
1 2 3 4 | Следующая страница реферата