Построение экономической модели с использованием симплекс-метода
| Категория реферата: Рефераты по экономико-математическому моделированию
| Теги реферата: сеть рефератов, экологические рефераты
| Добавил(а) на сайт: Кирилла.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Задача заключается в правильном распределении финансовых средств фирмы .
Математическое описание .
X1 - время потраченное на радиорекламу .
X2 - время потраченное на телерекламу .
Z - искомая целевая функция , оражающая максимальный сбыт от 2-ух видов
рекламы .
X1=>0 , X2=>0 , Z=>0 ;
Max Z = X1 + 25X2 ;
5X1 + 100X2 0
Использование графического способа удобно только при решении задач ЛП с
двумя переменными . При большем числе переменных необходимо применение
алгебраического аппарата . В данной главе рассматривается общий метод
решения задач ЛП , называемый симплекс-методом .
Информация , которую можно получить с помощью симплекс-метода , не ограничивается лишь оптимальными значениями переменных . Симплекс-метод фактически позволяет дать экономическую интерепритацию полученного решения и провести анализ модели на чувствительность .
Процесс решения задачи линейного программирования носит итерационный характер : однотипные вычислительные процедуры в определенной последовательности повторяются до тех пор , пока не будет получено оптимальное решение . Процедуры , реализуемые в рамках симплекс-метода , требуют применения вычислительных машин - мощного средства решения задач линейного программирования .
Симлекс-метод - это характерный пример итерационных вычислений , используемых при решении большинства оптимизационных задач . В данной главе рассматриваются итерационные процедуры такого рода , обеспечивающие решение задач с помощью моделей исследования операций .
В гл 2 было показано , что правая и левая части ограничений
линейной модели могут быть связаны знаками . Кроме того , переменные , фигурирующие в задачах ЛП , могут быть неотрицательными или не
иметь ограничения в знаке . Для построения общего метода решения задач ЛП
соответствующие модели должны быть представлены в некоторой форме , которую
назовем стандатрной формой линейных оптимизационных моделей . При
стандартной форме линейной модели
1. Все ограничения записываются в виде равенств с неотрицательной правой частью ;
2. Значения всех переменных модели неотрицательны ;
3. Целевая функция подлежит максимизации или минимизации .
Покажем , каким образом любую линейную модель можно привести к стандартной
.
Ограничения
1. Исходное ограничение , записанное в виде неравенства типа ) , можно представить в виде равенства , прибавляя остаточную переменную к левой части ограничения ( вычитая избыточную переменную из левой части ) .
Например , в левую часть исходного ограничения
5X1 + 100X2 0 , в результате чего исходное неравенство обращается в равенство
5X1 + 100X2 + S1 = 1000 , S1 => 0
Если исходное ограничение определяет расход некоторого ресурса , переменную
S1 следует интерпретировать как остаток , или неиспользованную часть , данного ресурса .
Рассмотрим исходное ограничение другого типа :
X1 - 2X2 => 0
Так как левая часть этого ограничения не может быть меньше правой , для
обращения исходного неравенства в равенство вычтем из его левой части
избыточную переменную S2 > 0 . В результате получим
X1 - 2X2 - S2 = 0 , S2 => 0
2. Правую часть равенства всегда можно сделать неотрицательной , умножая оби части на -1 .
Например равенство X1 - 2X2 - S2 = 0 эквивалентно равенству - X1 + 2X2 +
S2 = 0
3. Знак неравенства изменяется на противоположный при умножении обеих частей на -1 .
Например можно вместо 2 < 4 записать - 2 > - 4 , неравенство X1 - 2X2
0
Переменные
Любую переменную Yi , не имеющую ограничение в знаке , можно представить как разность двух неотрицательных переменных :
Yi=Yi’-Yi’’, где Yi’,Yi’’=>0.
Такую подстановку следует использовать во всех ограничениях , которые
содержат исходную переменную Yi , а также в выражении для целевой функции .
Обычно находят решение задачи ЛП , в котором фигурируют переменные
Yi’ и Yi’’ , а затем с помощью обратной подстановки определяют величину Yi
. Важная особенность переменных Yi’ и Yi’’ состоит в том , что при любом
допустимом решении только одна из этих переменных может принимать
положительное значение , т.е. если Yi’>0 , то Yi’’=0, и наоборот . Это
позволяет рассматривать Yi’ как остаточную переменную , а Yi’’ - как
избыточную переменную , причем лишь одна из этих переменных может принимать
положительное значение . Указанная закономерность широко используется в
целевом программировании и фактически является предпосылкой для
использования соответсвующих преобразований в задаче 2.30
Целевая функция
Целевая функция линейной оптимизационной модели , представлена в
стандартной форме , может подлежать как максимизации , так и минимизации .
В некоторых случаях оказывается полезным изменить исходную целевую функцию
.
Максимизация некоторой функции эквивалентна минимизации той же функции , взятой с противоположным знаком , и наоборот . Например максимизация функции
Z = X1 + 25X2 эквивалентна минимизации функции
( -Z ) = -X1 - 25X2
Эквивалентность означает , что при одной и той же совокупности ограничений
оптимальные значения X1 , X2 , в обоих случаях будут одинаковы . Отличие
заключается только в том , что при одинаковых числовых значениях целевых
функций их знаки будут противоположны .
Рекомендуем скачать другие рефераты по теме: виды шпаргалок, состав реферата.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата