Теория экономического прогнозирования
| Категория реферата: Рефераты по экономико-математическому моделированию
| Теги реферата: план реферата, дипломная работа формирование
| Добавил(а) на сайт: Belokon'.
Предыдущая страница реферата | 8 9 10 11 12 13 14 15 16 17 18 | Следующая страница реферата
?=?0+Smk(?k coskt + bk sinkt), (2.9)
где t- номер гармоники ряда Фурье;
ао и аk, bk — определяют по МНК;
k - число гармоник (1,2,...)
В условиях переходной экономики возрастает значимость прогнозирования жизненного цикла товара (ЖЦТ). Автором концепции ЖЦТ считается известный маркетолог Теодор Левитт, предложивший ее в 1965г.
Суть прогноза заключается в том, чтобы определить, как надолго и насколько интенсивно будет сохраняться спрос на данный товар. Прогноз ЖЦТ - многоплановый процесс, важной составляющей которого является подбор для каждого этапа соответствующей трендовой модели, отражающей не только рост, стабилизацию или спад, но и степень ускорения или замедления этих процессов. Такой прогноз является составным элементом прогнозирования покупательного спроса и рыночной конъюнктуры.
Жизненный цикл товара можно графически смоделировать в виде сложной кривой (рис. 2.3).
Математически смоделировать весь жизненный цикл товара практически невозможно, пришлось бы использовать сложную многочленную функцию, которую трудно интерпретировать. Целесообразно использовать метод линейно-кусочных агрегатов, то есть моделировать и прогнозировать каждый этап ЖЦТ с помощью трендовой и (или) многофакторной модели, отражающей закономерности каждого этапа.
Отмеченные ранее методы механического выравнивания могут также выступать в роли самостоятельных методов статистического прогнозирования.
Прогнозирование на основе адаптивных скользящих средних производится с использованием следующих формул:
Mi = Mi-1 + (yi - yi-m) / (m),
(2.10) где Mi – скользящая средняя, отнесенная к концу интервала.
Mi = ?t = (St+pi=1 yi) / (m).
(2.11)
Первый член уравнения (2.10) – Мi-1 несет «груз прошлого» - инерцию развития, а второй адаптирует среднюю к новым условиям. Таким образом, средняя как бы обновляется, «впитывая» информацию о фактически реализуемом процессе (степень обновления определяется весом 1/т).
Экспоненциальные средние. Влияние прошлых наблюдений должно затухать по
мере удаления от момента, для которого определяется средняя. Для этой цели
используют экспоненциальное сглаживание, применяемое в краткосрочном
прогнозировании (идея Н.Винера):
Qt = ? ? yt + (1+?) ? Qt-1,
(2.12)
где Qt - экспоненциальная средняя на момент t; а - коэффициент, характеризующий вес текущего наблюдения (параметр сглаживания).
При расчете по формуле (2.12) необходимо выбрать Qt-1. Часто
Qt-1 принимают равным yt.
Применение метода успешно, когда ряд имеет достаточно большое число уровней. Чем меньше а, тем больше роль «фильтра», поглощающего колебания 0< а rij ; ryj > rij ; rij > 0,8 ,
(2.19)
где rij — парные коэффициенты корреляции.
3. На заключительной стадии производят окончательный отбор факторов путем анализа значимости вектора оценок параметров различных вариантов уравнений множественной регрессии с использованием критерия Стьюдента:
tрасч > tk,a,
Рекомендуем скачать другие рефераты по теме: евгений сочинение, структура курсовой работы.
Категории:
Предыдущая страница реферата | 8 9 10 11 12 13 14 15 16 17 18 | Следующая страница реферата