Ядерный магнитный резонанс (ЯМР)
| Категория реферата: Рефераты по физике
| Теги реферата: сообщения бесплатно, реферат будущее
| Добавил(а) на сайт: Kalagin.
1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата
Введение.
1.1. Из истории спектроскопии магнитного резонанса.
До недавнего времени основой наших представлений о структуре атомов и
молекул служили исследования методами оптической спектроскопии. В связи с
усовершенствованием спектральных методов, продвинувших область
спектроскопических измерений в диапазон сверхвысоких (примерно 103 - 106
МГц; микрорадиоволны) и высоких частот (примерно 10-2 - 102 МГц;
радиоволны), появились новые источники информации о структуре вещества. При
поглощении и испускании излучения в этой области частот происходит тот же
основной процесс, что и в других диапазонах электромагнитного спектра, а
именно при переходе с одного энергетического уровня на другой система
поглощает или испускает квант энергии.
Разность энергий уровней и энергия квантов, участвующих в этих процессах, составляют около 10-7 эВ для области радиочастот и около 10-4 эВ для сверхвысоких частот.
Существование ядерных моментов впервые было обнаружено при изучении сверхтонкой структуры электронных спектров некоторых атомов с помощью оптических спектрометров с высокой разрешающей способностью.
Сверхтонкая структура атомных спектров навела Паули в 1924 г. на мысль о том, что некоторые ядра обладают моментом количества движения (угловым моментом), а, следовательно, и магнитным моментом, взаимодействующим с атомными орбитальными электронами. Впоследствии эта гипотеза была подтверждена спектроскопическими измерениями, которые позволили определить значения угловых и магнитных моментов для многих ядер.
Под влиянием внешнего магнитного поля магнитные моменты ядер
ориентируются определенным образом, и появляется возможность наблюдать
переходы между ядерными энергетическими уровнями, связанными с этими
разными ориентациями: переходы, происходящие под действием излучения
определенной частоты. Квантование энергетических уровней ядра является
прямым следствием квантовой природы углового момента ядра, принимающего 2I
+ 1 значений. Спиновое квантовое число (спин) I может принимать любое
значение, кратное 1/2; наиболее высоким из известных значений I (?7)
обладает 17671Lu. Измеримое наибольшее значение углового момента
(наибольшее значение проекции момента на выделенное направление) равно I?, где ?=h/2?, а h - постоянная Планка.
Значения I для конкретных ядер предсказать нельзя, однако было замечено, что изотопы, у которых и массовое число, и атомный номер четные, имеют I =
0, а изотопы с нечетными массовыми числами имеют полуцелые значения спина.
Такое положение, когда числа протонов и нейтронов в ядре четные и равны (I
= 0), можно рассматривать как состояние с "полным спариванием", аналогичным
полному спариванию электронов в диамагнитной молекуле.
В 1921г. Штерн и Герлах методом атомного пучка показали, что измеримые значения магнитного момента атома дискретны соответственно пространственному квантованию атома в неоднородном магнитном поле. В последующих экспериментах, пропуская через постоянное магнитное поле пучок молекул водорода, удалось измерить небольшой по величине магнитный момент ядра водорода. Дальнейшее развитие метода состояло в том, что на пучок воздействовали дополнительным магнитным полем, осциллирующим с частотой, при которой индуцируются переходы между ядерными энергетическими уровнями, соответствующими квантовым значениям ядерного магнитного момента.
Если ядерное спиновое число равно I, то ядро имеет (2I+1)
равноотстоящих энергетических уровней; в постоянном магнитном поле с
напряженностью H расстояние между наивысшим и наинизшим из этих уровней
равно 2(H, где (- максимальное измеримое значение магнитного момента ядра.
Отсюда расстояние между соседними уровнями равно (H/I, а частота
осциллирующего магнитного поля, которое может вызвать переходы между этими
уровнями, равна (H/Ih.
В эксперименте с молекулярным пучком до детектора доходят те молекулы, энергия которых не меняется. Частота, при которой происходят резонансные
переходы между уровнями, определяется путем последовательного изменения
(развертки) частоты в некотором диапазоне. На определенной частоте
происходит внезапное уменьшение числа молекул, достигающих детектора.
Первые успешные наблюдения ЯМР такого рода были выполнены с основными магнитными полями порядка нескольких кило эрстед, что соответствует частотам осциллирующего магнитного поля в диапазоне 105-108 Гц. Резонансный обмен энергией может происходить не только в молекулярных пучках; его можно наблюдать во всех агрегатных состояниях вещества.
В 1936г. Горнер пытался обнаружить резонанс ядер Li7 во фтористом литии
и ядер H1 в алюмокалиевых квасцах. Другая безуспешная попытка была
предпринята гортнером и Бруром в 1942г. Регистрацию поглощения
высокочастотной энергии при резонансе в этих экспериментах предполагалось
производить соответственно калориметрическим методом и по аномальной
дисперсии. Основной причиной неудач этих опытов был выбор неподходящих
объектов. Лишь в конце 1945 года двумя группами американских физиков под
руководством Ф. Блоха и Э.М. Пурселла впервые были получены сигналы
ядерного магнитного резонанса. Блох наблюдал резонансное поглощение на
протонах в воде, а Парселл добился успеха в обнаружении ядерного резонанса
на протонах в парафине. За это открытие они в 1952 году были удостоены
Нобелевской премии.
1.2.Технологичекие приложения ЯМР (основные достоинства метода ЯМР).
Метод ЯМР, хотя он и называется методом ядерного магнитного резонанса, не имеет никакого отношения к ядерной физике, которая, как известно, изучает процессы превращения ядер, т.е. радиоактивные процессы. При этом магнитная энергия (а явление ЯМР имеет место при помещении исследуемого образца в постоянное магнитное поле) не влияет на термодинамические свойства вещества, т.к. она во много раз (а точнее - на несколько порядков) меньше тепловой энергии, характерной для происходящих в обычных условиях процессов, в том числе и биологических.
Основные достоинства метода ЯМР.
( Высокая разрешающая способность – на десять порядков больше, чем у оптической спектроскопии.
( Возможность вести количественный учет (подсчет) резонирующих ядер. Это открывает возможности для количественного анализа вещества.
( Спектры ЯМР зависят от характера процессов, протекающих в исследуемом веществе. Поэтому эти процессы можно изучать указанным методом. Причем доступной оказывается временная шкала в очень широких пределах – от многих часов до малых долей секунды.
( Современная радиоэлектронная аппаратура и ЭВМ позволяют получать параметры, характеризующие явление, в удобной для исследователей и потребителей метода ЯМР форме. Данное обстоятельство особенно важно, когда речь идет о практическом использовании экспериментальных данных.
Главным преимуществом ЯМР по сравнении с другими видами спектроскопии
является возможность преобразования и видоизменения ядерного спинового
гамильтониана по воле экспериментатора практически без каких-либо
ограничений и подгонки его под специальные требования решаемой задачи. Из-
за большой сложности картины не полностью разрешенных линий многие
инфракрасные и ультрафиолетовые спектры невозможно расшифровать. Однако в
ЯМР преобразование гамильтониана таким образом, чтобы можно было подробно
проанализировать спектр, во многих случаях позволяет упростить сложные
спектры.
То, с какой легкостью удается преобразовать ядерный спиновый гамильтониан, обусловлено определенными причинами. Благодаря тому, что ядерные взаимодействия являются слабыми, можно ввести сильные возмущения, достаточные для того, чтобы подавить нежелательные взаимодействия. В оптической спектроскопии соответствующие взаимодействия обладают значительно большей энергией и подобные преобразования фактически невозможны.
Модификация спинового гамильтониана играет существенную роль во многих приложениях одномерной ЯМР - спектроскопии. В настоящее время широкое распространение получило упрощение спектров или повышение их информативности с помощью спиновой развязки, когерентного усреднения многоимпульсными последовательностями, вращения образцов или частичной ориентации в жидкокристаллических растворителях.
Говоря о достоинствах приборов ЯМР, необходимо исходить из реальных возможностей в приобретении и эксплуатации ЯМР-спектрометров. В этой связи необходимо отметить следующее.
Операторские обязанности при работе на этих спектрометрах может выполнять любой человек. Но само обслуживание и ремонт требуют высокой квалификации.
Рекомендуем скачать другие рефераты по теме: клетка реферат, реферат на тему орган.
Категории:
1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата