Движение подземных вод
| Категория реферата: Рефераты по геологии
| Теги реферата: диплом управление предприятием, курсовики скачать бесплатно
| Добавил(а) на сайт: Shkirjak.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
На рис.2 показана зависимость скорости фильтрации воды в песчаных породах (прямая I) ив глинах (кривая II) от напорного градиента. При фильтрации вода в песчаных породах существует линейная зависимость между скоростью фильтрации V и напорным градиентом I; при фильтрации воды в глинах - криволинейная зависимость на первом участке (1-2) и прямолинейная на втором (2-3). Точка 1 кривой 2 соответствует начальному напорному градиенту I , при котором вода находится в предельном состоянии; при превышении же начального градиента отмечается фильтрация воды, но зависимость скорости фильтрации от напорного градиента имеет прямолинейный характер (участок 1-2 кривой II). Точка 2 соответствует значению предельного напорного градиента Iпр, при превышении которого становится справедливым закон Дэрси.
Экспериментальными исследованиями С.А.Роза установлено, что для плотных глин значение начального напорного градиента, при превышении которого начинается фильтрация, может достигать 20-30, в остальных случаях оно может составлять несколько единиц.
В соответствии с изложенным в природных условиях следует учитывать возможность фильтрации подземных вод через относительно водоупорные глинистые отложения.
Структура фильтрационного потока
Для описания структуры потока используется гидродинамическая сетка, которая состоит из линий напора и линий тока.
Общей структурной формой является пространственный (3-х мерный) поток ,гидродинамическая сетка которой деформируется по З-м пространственным координатам.
Анализ пространственных потоков сложен и такой анализ встречается редко. Основными формами потока, широко используемыми в гидрогеологических расчетах - плоские (двумерные) потоки в вертикальном сечении (профильные) и в плане (плановые), для которых характерна деформация гидродинамической сетки в какой-либо одной плоскости.
В профильных потоках деформации линий тока происходят в вертикальной плоскости, а в плане поток имеет плоско-параллельный характер, т.е. в атом случае линии тока в плане параллельны друг другу. Пример - фильтрация в основании плотин.
В плановых потоках деформаций линий токов - в плане, а в вертикальном сечении поток носит плоско-параллельный характер. Такие условия характерны для потоков большой протяженности, длина которой значительно превышает их мощность.
Наиболее простой структурной формой является линейный (одномерный)
поток, движение которого происходит в одном направлении.
В плановом потоке удобно вместо V фильтрации использовать понятие удельного
расхода потока q , который представляет собой исход планового потока
шириной I м; т.е. площадь поперечного сечения для удельного расхода
численно равна мощности пласта. При однородном строении пласта по
вертикали для записи удельного расхода мощности используется ф. Дэрси, полагая Q=q, ?=m, т.е. q= кт *У = TУ
T [м2 /сек]-проводимость потока - удельной расход потока при единичном
градиенте Для планового потока, состоящего из различной проницаемости
q=q1+q2+…=(K1 m1+K 2m2+…)Y т.е. T= K1 m1+K 2m2+…
Тогда средний (средневзвешенный)
Кср=T/m = (K1 m1+K 2m2+…)/m
Таким образом элементы Фильтрации потока :
1. пьезометрический напор H=p/? +z;
2. напорный градиент dh/dl ;
3. линии равных напоров;
4. линии токов;
5. скорость фильтрации.
Понятие об установившейся и неустановившейся фильтрации подземных вод.
Фильтрация подземных вод в пористой или трещиноватой среде горных пород
может иметь установившийся или неустановившийся характер Строго говоря, движение подземных вод в горных породах всегда является в той или иной мере
неустановившимся , т.е. переменным во времени. Неустановившееся движение
проявляется в изменениях уровня подземных вод, что обусловливает изменения
напорных градиентов, скоростей фильтрации и расхода подземного потока.
Изменения эти могут быть вызваны влиянием естественных или искусственных
факторов, определяющих условия питания, движения и разгрузки подземных
вод. К числу таких факторов можно отнести неравномерное выпадение и
инфильтрацию атмосферных осадков, колебания горизонтов поверхностных
водоемов, паводки на реках, сооружение и функционирование водохранилищ и
каналов, процессы орошения и осушения земельных территорий, откачки
подземных вод из скважин и горных выработок, захоронение сточных вод и др.
В районах, где условия питания и разгрузки подземных вод изменяются во
времени незначительно, движение подземных вод можно рассматривать как
установившееся, т.е. практически не изменяющееся во времени. При
установившейся фильтрации уровни и скорость движения подземных вод в одних
и тех же точках не изменяются во времени, являясь лишь функцией координат
пространства. H,Y,V=const.
Установившееся и неустановившееся движение подземных вод наблюдается как в
безнапорных, так и в напорных водоносных горизонтах. Особенно резко
выраженный неустановившийся характер носит движение подземных вод в первый
период работы водозаборных сооружений
При этом следствием неустановившегося движения в безнапорных
водоносных горизонтах является осушение части водоносного горизонта (в
пределах создаваемой депрессии), происходящее при понижении уровня в
процессе откачки вода. Осушение пласта в зоне влияния откачки происходит
постепенно, вызывая изменение уровня, скорости движения и расхода
подземного потока.
При изучении условий движения подземных вод неглубоких безнапорных
водоносных горизонтов упругие свойства воды и горных пород обычно не
учитываются, а соответствующий этому режим фильтрации называется жестким.- n,?=const.
В напорных водоносных горизонтах неустановившееся движение определяется
упругими свойствами воды и горных пород. При вскрытии напорных вод
скважинами и снижении напоров при откачках происходит разуплотнение воды с
одновременным упругим расширением пород, под влиянием чего вода как бы
выдавливается из пласта в скважины (водозаборные сооружения). Так возникает
своеобразный режим подземных вод, соответствующий неустановившемуся
характеру их фильтрации.
Помимо упругих свойств воды и горных пород на неустановившееся движение в
напорных водоносных горизонтах могут оказывать влияние и иные факторы;, в
том числе приток води из других горл-зонтов или осушение водоносного пласта
в области его выхода на поверхность. При наличии постоянно действующих
поверхностных источников питания, с которыми гидравлически связаны напорные
водоносные горизонты, и интенсивного поступления в них воды из соседних
слоев движение подземных вод стабилизируется и со временем приобретает
характер установившегося. Y,V =const.
Гидродинамические расчеты по прогнозу и оценке условии неустановившейся
Фильтрации подземных вод выполняются с учетом фактора времени. При этом
исковые значения параметров потока подземных вод определяется как функции
координат пространства времени.
Определение направленности и скорости движения подземных вод.
Определение направленности движения подземных вод.
Направление движения подземных вод легко устанавливается при наличии карт
гидроизогипс (либо гидроизопьез) по изучаемым водоносным горизонтам. По
таким картам направление движения подземных вод определяется линиями токов, проведенным перпендикулярно, к линиям равного напора гидроизогипсам или
гидроизопьезам по уклону потока.
По отсутствии карт, отражающих положение свободной или пьезометрической
поверхности подземных вод, для определения направления их движения
необходимо иметь не менее трех выработок, чтобы установить отметки уровня
подземных вод. Выработки желательно располагать по углам равностороннего
треугольника с длиной стороны от 50 до 200 метров(чем меньше уклон
потока, тем больше расстояние между скважинами). По известным или
установленным отметкам уровня подземных вод путем интерполяции составляется
план изолинии свободной или изотермической поверхности определяется
направление движения потока по линиям токов.
[pic]рис.3
Для получения надежных данных о направлениях движения потоков подземных вод
следует использовать материалы режимных наблюдений(карты изолиний на
различные периоды времени). Определение направления движения по картам
гидроизогипс следует считать основным методом при отсутствии карт
достоверных данных об отметках уровней в отдельных точках направление
давления подземных вод можно устанавливать с помощью
геофизических(фотографирование в скважинах конусов распространения
красителя от точечного источника, метод заряженного тела, замеры
интенсивности конвективного переноса тепла в разных направления от датчика, круговые измерения естественного потенциала и др.), радиоиндикаторных и
других методов.
Геофизические методы определения направления движения подземных вод.
Наиболее перспективными являются односкважинные методы, в том числе метод
фотографирования конусов выноса от точечного источника красителя, при
котором периодически фотографируются распространяющиеся от специальной
капсулы конуса красителя на фоне стрелки магнитного указателя. Всего за
один спуск можно наполнить до 60 снимков, направление движения подземных
вод определяется по направлению конуса заноса красителя для получения
надежных результатов достаточно 4-6снимков.
Точность определении направления подземного потока может быть оценена
величиной относительной погрешности от 3 до 20, в значительной мере
погрешность зависит от скорости движения подземных вод. Метод может
использоваться при скоростях фильтрации не ниже 0,5 м/сут. По времени
существования конуса можно ориентировочно определить и скорость фильтрации.
Этот метод значительно менее апробирован, по сравнению с радиоиндикаторным, но он несколько проще в пополнении и не требует согласования с органами
санэпидемнадзора.
Односкважинные методы осуществления направления движения подземных
вод не рекомендуется использовать в породах с редкой и неравномерной
трещиноватостью.
Индикаторные методы определения направления и скорости движения подземных
вод.
Одним из важнейших показателей миграции подземных вод является
действительная скорость из движения или фильтрации V?, которая связана со
скоростью фильтрации V соотношением: V? =V/na, (6)
где na-активная в фильтрационном отношении пористость породы, равная
разности между полной плотностью no и объемным содержанием связной породы
nс и защемленного воздуха nз , т.е. na= no- nс- nз.
при решении задач следует учитывать, что действительная скорость
фильтрации, определяющая конвективный перенос вещества и тепла с
фильтрационным потоком, может изменяться за счет сорбции солей и растворов
, выщелачивания, фильтрация микроорганизмов и других факторов.
При наличии карт гидроизогипс и данных о коэффициенте фильтрации пористости
водоносных пород действительная скорость V? может быть определена по
значению скорости фильтрации с учетом(6).
Однако более надежным представляется определение действительной скорости
движения подземных вод с помощью специальных полезных опытов, среди которых
наиболее практическое применение получили индикаторные методы, основанные
на введении в испытуемый горизонт через пусковые скважины каких-либо
индикаторов и определении скорости их передвижения в условиях подземного
потока по времени появления индикаторов в наблюдательных скважинах.
В качестве наиболее часто практикующих индикаторов используются вещества
(флюоресцеин, уранин, эритрозин и др.), электролиты, радиоактивные
индикаторы.
Перед проведением опыта участок работ необходимо хорошо изучить в геолого-
гидрогеологическом отношении. В пусковых и наблюдательных скважинах с
помощью геофизических исследований раскодометрии, лабораторных работ и
поинтервального опробования должны быть выделены соответствующим образом
изучены и при необходимости изолированы пласты, горизонты или интервалы, подлежащие исследованию.
Наблюдательные скважины для прослеживания передвижения индикаторов
закладываются ниже по потоку на расстоянии от 0,5 до 2 м в суглинистых и
супесчаных породах, от 2 до 8ь в песчаных зернистых породах, от 3 до 15 в
гравийно–галечных породах, от 15 до 30 в закарстованных породах. Количество
наблюдательных скважин (односкважинные методы) если для таких определений
используются данные наблюдений за изменением концентрации индикатора во
времени или за его распространением непосредственно в пусковой
скважине(фотографирование конусов распространения красителей).
Появление индикатора в наблюдательных скважинах устанавливается химически, электролитическим и колориметрическим способами, при этом первые два дают
наиболее надежные результаты.
При химическом способе появления индикатор устанавливается по изменению его
концентрации в периодически отбираемых из наблюдательных скважин конусах
воды. Для более точного и обоснованного установления момента появления
индикатора в наблюдательной скважине результаты определения изображаются
в виде графика изменения концентрации индикаторов во времени С=F(t)/ время
прохождения индикатора от пусковой скважины tмакс исчисляется с момента его
запуска в пусковую скважину до момента максимальной концентрации индикатора
в наблюдательной скважине.
[pic]рис.4
Изменение концентрации индикатора С в наблюдаемой скважине во времени t :
1-точка появления индикатора в наблюдательной скважине,
2-точка максимальной концентрации индикатора.
Действительная скорость движения подземных вод V? определяется как частное
от деления пройденного индикатором расстояния L на время :
V?=L/ tмакс (7)
Радиоиндикаторные методы.
В последние годы все более широкое применение для определения направления в
скорости движения подземных вод, а также для решения многих других
практических задач приобретают радиоиндикаторные методы. В качестве
индикаторов для мечения воды используются различные радиоизотопы.
Контрольным перемещением изотопов ведется по замерам интенсивности
излучения их концентрации. Возможность использования радиоактивных
индикаторов низких концентрацией, их сравнительно незначительная
сорбционная способность и высокая точность определений предопределяют
большие перспективы применения радиоиндикаторных методов для решения
гидрогеологических задач и , в частности, для определения направления и
скорости движения подземных вод. Наибольшее применение в качестве
индикаторов находят различные соединения.
Радиоиндикаторные методы применяются в различных вариантах и модификациях.
Суть односкважинного радиоиндикаторного метода заключается в проведении
наблюдений за изменением во времени концентрации введенного в скважину
радиоактивного индикатора. Изменения концентрации индикатора во времени и
эпюры распределения его активности , получаемые с помощью зонда, опускаемого в скважину, являются основанием для определения расхода, скорости и направления движения потока подземных вод. Особенно эффективным
является этот метод при импульсном поведении радиоиндикаторов.
Измеряя в разменые моменты времени силу тока в цепи, можно определить электропроводимость воды в наблюдательной скважине и тем самым установить момент появления в ней соли.
Рекомендуем скачать другие рефераты по теме: решебник, баллов.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата