Расчет неупорядоченных площадных систем
| Категория реферата: Рефераты по геологии
| Теги реферата: здоровый образ жизни реферат, красный диплом
| Добавил(а) на сайт: Ladimir.
1 2 3 | Следующая страница реферата
Расчет неупорядоченных площадных систем
Р.С.Шенгелов
Теперь рассмотрим особенности расчетов неупорядоченных площадных систем. Очень часто системы водозаборных скважин имеют именно такой характер: в силу особенностей условий строительства и землепользования, исторически сложившиеся и т.д. Их точный расчет всегда возможен по принципу суперпозиции (суммирования взаимодействий), но это может быть очень громоздко и трудоемко при выполнении многовариантных расчетов, так как количество скважин в системе может достигать десятков и даже сотен. Поэтому нередко используют методику приближенного расчета крупных площадных систем взаимодействующих скважин, который бывает вполне достаточен для решения двух важных задач:
а) расчет влияния таких систем на некоторые удаленные от них точки (почему-либо интересные - например, на соседний водозабор);
б) предварительная оценка возможного суммарного дебита таких систем.
Для приближенного расчета площадных систем используют идею "БОЛЬШОГО КОЛОДЦА", под которым понимается одна-единственная скважина с большим радиусом , эквивалентная всей системе, т.е. имеющая тот же суммарный дебит и дающая те же понижения в области влияния. Наиболее чисто этот прием обосновывается при отсутствии близкорасположенных границ - например, для "схемы Тейса".
Система состоит из скважин с разными дебитами и разным временем ввода в действие для каждой скважины (рис.1).
Рис. 1. |
Определим по принципу сложения решений понижение уровня в некоторой точке в момент t, полагая, что расчетное время достаточно для наступления квазистационарного режима в точке:
(введем долевые коэффициенты дебита )
.
Учитывая, что, а две подчеркнутые группировки однородных членов можно свернуть по свойствам логарифма:
,
,
получим окончательное выражение в виде:
.
Видно, что полученное выражение для по форме аналогично действию одной скважины, находящейся на расчетном расстоянии от точки и действующей с суммарным дебитом в течение расчетного времени . Такая скважина и называется "большим колодцом". Некоторые комментарии:
В частном случае равнодебитных скважин () долевые коэффициенты также равны между собой; тогда
Очевидно, что при такой методике расчета физическое положение "большого колодца" в принципе безразлично; важно только, что он находится на расчетном расстоянии. Можно использовать и другую методику, не требующую специального вычисления : предварительно рассчитывается положение центра (оси) "большого колодца" как центра тяжести системы скважин по их расходам, от которого и измеряется расчетное расстояние до точки (рис. 2).
Координаты центра "большого колодца" в произвольной системе декартовых координат {X,Y} вычисляются с учетом координат и долевых коэффициентов дебита каждой скважины:
.
По численным оценкам, погрешность расчетов понижений не превышает 3-5% для точек, удаленных от площадки системы скважин на расстояние, превышающее ее наибольший размер.
Другая полезная практическая задача: оценка возможного суммарного притока к системе скважин. Для этого рассчитывается радиус "большого колодца" , т.е. точка перемещается на стенку "большого колодца". При этом одна из скважин принимается за опорную и от нее рассчитываются расстояния до всех остальных; после этого оценивается
Рекомендуем скачать другие рефераты по теме: военные рефераты, контрольные за 1 полугодие.
Категории:
1 2 3 | Следующая страница реферата