Дискретные цепи
| Категория реферата: Рефераты по информатике, программированию
| Теги реферата: физика и техника, реферат на тему работа курсовые работы
| Добавил(а) на сайт: Sergeevich.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
n=2: y(0T) = x(0T)h(2T) + x(1T)h(1T) + x(2T)h(0T) + x(3T)h(-1T) = 0,168;
n=3: y(0T) = x(0T)h(3T) + x(1T)h(2T) + x(2T)h(1T) + x(3T)h(0T) = -0,016;
Следовательно y(nT)= {0; 0,4; 0,168; -0,016}, что совпадает с расчётами по линейной свёртке в примере параграфа 2.4.
Графики периодических числовых последовательностей x(nT), h(nT), y(nT) приведены на рис.(2.7).
К периодическим числовым последовательностям, полученным изложенным выше способом, можно применить ДПФ, перемножить результаты и после выполнения обратного ДПФ получить последовательность y(nT), совпадающую с результатами расчётов по круговой свёртке.
Энергия дискретного сигнала
Корреляция и энергетический спектр.
В качестве энергии дискретного сигнала принята мера
Wx =x2(nT), (2.15)
соответственно в частотной области, согласно равенству Парсеваля,
Wx =X2(w)dw =X(jw)X*(jw)d(jw), (2.16)
где X(jw) = X(w)ejj(w) - спектр сигнала x(nT),
X*(jw) = X(w)e-jj(w) - спектр x(-nT) в соответствии с теоремой о спектре инверсного сигнала,
X2(w) = X(jw)ЧX*(jw) = Sx(jw) - энергетический спектр сигнала x(nT).
На рис.(2.8) показан в качестве примера сигнал x(nT) и его инверсная копия x(-nT) для некоторого частного случая
Энергетический спектр выражает среднюю мощность сигнала x(nT), приходящуюся на узкую полосу частот в окрестности переменной w.
Во временной области энергетическому спектру соответствует свертка инверных сигналов, что определяет корреляционную функцию Sx(nT) сигнала x(nT).
. (2.17)
Согласно (2.17) и (2.15) корреляционная функция в точке n = 0 равна энергии сигнала, т. е.
(2.18)
Для периодических дискретных сигналов корреляционная функция и энергетический спектр связаны формулами ДПФ
. (2.19)
Отсюда получаются расчётные формулы энергии периодических дискретных последовательностей
, (2.20)
Рекомендуем скачать другие рефераты по теме: шпаргалка рф, курсовая работа проблема.
Категории:
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата