Эйлеровы и гамильтоновы графы
| Категория реферата: Рефераты по информатике, программированию
| Теги реферата: компьютерные рефераты, инновационная деятельность
| Добавил(а) на сайт: Папанов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Название «гамильтонов цикл» произошло от задачи «Кругосветное
путешествие» предложенной ирландским математиком Вильямом Гамильтоном в
1859 году. Нужно было, выйдя из исходной вершины графа, обойти все его
вершины и вернуться в исходную точку. Граф представлял собой укладку
додекаэдра, каждой из 20 вершин графа было приписано название крупного
города мира.
§1. Основные понятия и определения
Если граф имеет простой цикл, содержащий все вершины графа по одному разу, то такой цикл называется гамильтоновым циклом, а граф называется гамильтоновым графом. Граф, который содержит простой путь, проходящий через каждую его вершину, называется полугамильтоновым. Это определение можно распространить на ориентированные графы, если путь считать ориентированным.
Гамильтонов цикл не обязательно содержит все ребра графа. Ясно, что гамильтоновым может быть только связный граф и, что всякий гамильтонов граф является полугамильтоновым. Заметим, что гамильтонов цикл существует далеко не в каждом графе.
Замечание.
Любой граф G можно превратить в гамильтонов граф, добавив достаточное
количество вершин. Для этого, например, достаточно к вершинам v1,…,vp графа
G добавить вершины u1,…,up и множество ребер {(vi,ui)}[pic]{(ui,vi+1)}.
Степенью вершины v называется число ребер d(v), инцидентных ей, при этом петля учитывается дважды. В случае ориентированного графа различают степень do(v) по выходящим дугам и di(v) — по входящим.
§2. Условия существования гамильтонова цикла
В отличии от эйлеровых графов, где имеется критерий для графа быть
эйлеровым, для гамильтоновых графов такого критерия нет. Более того, задача
проверки существования гамильтонова цикла оказывается NP-полной.
Большинство известных фактов имеет вид: «если граф G имеет достаточное
количество ребер, то граф является гамильтоновым». Приведем несколько таких
теорем.
Теорема Дирака. Если в графе G(V,E) c n вершинами (n ? 3) выполняется условие d(v) ? n/2 для любого v[pic]V, то граф G является гамильтоновым.
Доказательство.
От противного. Пусть G — не гамильтонов. Добавим к G минимальное количество новых вершин u1, … ,un, соединяя их со всеми вершинами G так, чтобы G’:= G + u1 + … + un был гамильтоновым.
Пусть v, u1, w, … ,v — гамильтонов цикл в графе G’, причем v[pic]G, u1[pic]G’, u1[pic]G. Такая пара вершин v и u1 в гамильтоновом цикле
обязательно найдется, иначе граф G был бы гамильтоновым. Тогда w[pic]G, w
[pic] {u1,…,un}, иначе вершина u1 была бы не нужна. Более того, вершина v
несмежна с вершиной w, иначе вершина u1 была бы не нужна.
Далее, если в цикле v,u1,w, … ,u’,w’, … ,v есть вершина w’, смежная с
вершиной w, то вершина v’ несмежна с вершиной v, так как иначе можно было
бы построить гамильтонов цикл v,v’, … ,w,w’, … ,v без вершины u1, взяв
последовательность вершин w, … ,v’ в обратном порядке. Отсюда следует, что
число вершин графа G’, не смежных с v, не менее числа вершин, смежных с w.
Но для любой вершины w графа G d(w) ? p/2+n по построению, в том числе d(v)
? p/2+n. Общее число вершин (смежных и не смежных с v) составляет n+p-1.
Таким образом, имеем: n+p-1 = d(v)+d(V) ? d(w)+d(v) ? p/2+n+p/2+n = 2n+p.
Следовательно, 0 ? n+1, что противоречит тому, что n > 0.
Теорема Оре. Если число вершин графа G(V,E) n ? 3 и для любых двух несмежных вершин u и v выполняется неравенство: d(u)+d(v) ? n и [pic](u,v)[pic]E, то граф G — гамильтонов.
Граф G имеет гамильтонов цикл если выполняется одно из следующих условий:
Условие Поша: d(vk) ? k+1 для k < n/2.
Условие Бонди: из d(vi) ? i и d(vk) ? k => d(vi)+d(vk)?n (k?i)
Условие Хватала: из d(vk) ? k ? n/2 => d(vn-k) ? n-k.
Далее, известно, что почти все графы гамильтоновы, то есть где H(p) — множество гамильтоновых графов с p вершинами, а G(p) — множество всех графов с p вершинами. Таким образом, задача отыскания гамильтонова цикла или эквивалентная задача коммивояжера являются практически востребованными, но для нее неизвестен (и, скорее всего не существует) эффективный алгоритм решения.
Пример графа, когда не выполняется условие теоремы Дирака, но граф является гамильтоновым.
[pic]
N = 8; d(vi) = 3; 3 ? 8/2 = 4 не гамильтонов граф, но существует гамильтонов цикл: M = (1, 2, 3, 4, 5, 6, 7, 8, 1)
§3. Задачи связанные с поиском гамильтоновых циклов
Рекомендуем скачать другие рефераты по теме: доклад на тему культура, реферат н.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата