Линейное программирование: решение задач графическим способом
| Категория реферата: Рефераты по информатике, программированию
| Теги реферата: рефераты по информатике бесплатно, инвестиции реферат
| Добавил(а) на сайт: Юдифь.
Предыдущая страница реферата | 1 2 3
Если в системе ограничений (**) - (***) n = 3, то каждое неравенство геометрически представляет полупространство трехмерного пространства, граничная плоскость которого аi1х1 + аi2х2 + аi3х1 ? bi, а условия неотрицательности — полупространства с граничными плоскостями соответственно xi = 0 (i = 1, 2, 3). Если система ограничений совместна, то эти полупространства, как выпуклые множества, пересекаясь, образуют в трехмерном пространстве общую часть, которая называется многогранником решений.
Пусть в системе (**) - (***) п > 3, тогда каждое неравенство определяет полупространство n-мерного пространства с граничной гиперплоскостью аi1х1 + аi2х2 + … + аinхn ? bi i = 1, т , а условия неотрицательности — полупространства с граничными гиперплоскостями xj = 0, j = 1, n.
Если система ограничений совместна, то по аналогии с трехмерным пространством она образует общую часть n-мерного пространства, называемую многогранником решений, так как координаты каждой его точки являются решением.
Таким образом, геометрически задача линейного программирования представляет собой отыскание такой точки многогранника решений, координаты которой доставляют линейной функции минимальное значение, причем допустимыми решениями служат все точки многогранника решений.
1.3 Этапы решения графического метода задач линейного программирования
Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задач трехмерного пространства, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трех изобразить графически вообще невозможно.
Пусть задача линейного программирования задана в двумерном пространстве, т. е. ограничения содержат две переменные.
Если в ЗЛП ограничения заданы в виде неравенств с двумя переменными, она может быть решена графически. Графический метод решения ЗЛП состоит из следующих этапов.
Этап 1.
Сначала на координатной плоскости x1Ox2 строится допустимая
многоугольная область (область допустимых решений, область определения), соответствующая ограничениям:
|[pic] |(1.3|
| |1) |
Не приводя строгих доказательств, укажем те случаи, которые тут могут получится.
1. Основной случай - получающаяся область имеет вид ограниченного выпуклого многоугольника (рис. 3а)).
2. Неосновной случай - получается неограниченный выпуклый многоугольник, имеющий вид, подобный изображенному на рис. 3.б. Подобная ситуация, например, получится, если в рассмотренном выше примере убрать ограничение [pic]. Оставшаяся часть будет неограниченным выпуклым многоугольником.
[pic]
Наконец, возможен случай, когда неравенства (1.31) противоречат друг другу, и допустимая область вообще пуста.
Рассмотрим теорию на конкретном примере:
Найти допустимую область задачи линейного программирования, определяемую ограничениями
|[pic] |(1.3|
| |2) |
[pic]
Решение:
1. Рассмотрим прямую [pic]. При [pic], а при [pic]. Таким образом, эта прямая проходит через точки (0,1) и (-1,0). Беря [pic]получим, что
-0+0
Скачали данный реферат: Aleev, Makarkin, Васильев, Makaseev, Ivashin, Shalomencev, Kuchava.
Последние просмотренные рефераты на тему: реферати, страхование реферат, структура курсовой работы, отчет по производственной практике.
Категории:
Предыдущая страница реферата | 1 2 3