Океан в капле воды, или Вся техника в одной стекляшке
| Категория реферата: Рефераты по истории техники
| Теги реферата: шпоры по математике, рефераты без регистрации
| Добавил(а) на сайт: Бойков.
1 2 3 4 5 | Следующая страница реферата
Океан в капле воды, или Вся техника в одной стекляшке
Леонид Ашкинази
Рассмотрена история электронных вакуумных приборов (сеточных ламп и СВЧ-приборов), принципы их работы, основы конструкции и технологии.
Повествование о любом объекте техники должно состоять из рассказа о его теории, конструкции, технологии и применении. Вот, к примеру, велосипед: его теория соединяет технику с физикой (гироскоп), конструкция и технология – со всей техникой (конструкция – с самописцем: цепная передача, технология – с метательным оружием: резина), применение соединяет велосипед с психологией (прогулки с девушкой), социологией (сбыт), биологией (мозжечок). Причем все это должно рассматриваться в развитии, в истории, и кончаться прогнозом – будет ли кататься и как именно киборгизированный и клонированный человек XXII века? Я полагаю, что с мороженым в руке.
Понятно, что последовательное и глубокое воплощение такой программы – «это вещь на века, как Баальбекская платформа». И оно требует совершенно нереального объема публикации. Попробуем воплотить эту программу последовательно, охватив все аспекты, но установив такую глубину захвата, чтобы уложиться в статью. При этом читатель получает общую картину, а уточнять детали ему придется – если возникнет интерес – самому.
Эти две статьи будут об электронных лампах. В первой мы рассмотрим теорию, конструкцию, историю и роль в цивилизации примерно до середины прошлого века. Во второй – их роль во второй половине века, технологию и перспективы. Для такого деления материала есть несколько причин, главная из них такова: во второй половине века у ламп возник конкурент – полупроводниковый прибор, транзистор. Это существенно повлияло на развитие ламп, а конкуренция между лампами и транзисторами и разделение ими сфер влияния сильнейшим образом повлияли на технику вообще и на развитие цивилизации в целом. Достаточно сказать, что без транзисторов мы бы не имели современных компьютеров, а без ламп – радио и телевидения.
Начнем с определения и нескольких принципиальных тезисов. Электронная лампа – это один из приборов, предназначенных для преобразования электрических сигналов, и он использует воздействие электрического и магнитного поля на электроны, движущиеся в вакууме. От полупроводниковых и газоразрядных приборов лампу отличает то, что в ней вакуум. Стало быть, нужен баллон, отделяющий вакуум от атмосферы. Раз мы собираемся работать с электронами, нужен катод – электрод, из которого мы будем извлекать электроны. Чаще всего это термокатод, то есть энергию, необходимую электронам для выхода из катода в вакуум, мы будем сообщать им путем нагрева. Для нагрева потребуется нагреватель. Раз мы извлекли электроны, надо будет их вернуть (соблюдая закон сохранения заряда), то есть потребуется анод – электрод, который примет электроны из вакуума и вернет их в электрическую цепь. И нам потребуется какой-то электрод, посредством которого мы будем управлять электронами. В простейшем варианте такой электрод будет один, его называют сеткой, он действительно на нее похож, и именно сквозь нее пролетают электроны, держа путь от катода к аноду. При изменении напряжения на сетке изменяется поток электронов: отрицательное напряжение на сетке, отрицательный заряд отталкивает электроны, положительный притягивает. Сеток может быть несколько, напряжение на каждой будет влиять на ток, и мы получим смеситель – лампу, в которой сигналы будут «смешиваться». Все это называется «лампы с электростатическим управлением».
Если мы попробуем усиливать такой лампой сигнал все более высокой частоты, то возникнет проблема. Электрону требуется какое-то время, чтобы долететь от катода до сетки, и если за время его полета напряжение на сетке успеет сменить знак, влияние напряжения на ток ослабеет и в итоге исчезнет совсем. Для работы в области таких частот применяются лампы «с протяженным электронным пучком». Существует несколько типов таких ламп, а основные принципы их работы были предложены в предвоенные годы – стимулом стало развитие радиолокации. Именно такие лампы применяются для космической связи и в телевидении, и в обозримом будущем они не будут вытеснены полупроводниковыми приборами, поскольку есть принципиальные физические ограничения на создание высокочастотных и мощных полупроводниковых приборов. В области же низких частот электронные лампы в значительной мере уступили место полупроводникам, за исключением высоковольтных и сильноточных приборов и ламп для высококачественного усиления звука. В первом случае полупроводниковая экспансия ограничена относительно низким – не более нескольких киловольт – рабочим напряжением и относительно небольшим – не более килоампер – током, во втором случае – нелинейностью зависимостей токов от напряжений, приложенных к приборам. Еще две области применения, в которых полупроводниковые приборы не могут тягаться с лампами, – это высокие температуры и радиация.
Если в определении электронной лампы выкинуть слово «электрических», то придется считать лампой и кинескоп (в телевизоре и компьютере), который преобразует электрический сигнал в оптический, и фотоэлемент, который осуществляет обратную операцию, и электронно-оптический преобразователь, который делает и то, и это. Относить их к электронным лампам или нет – дело вкуса. Мы так поступать не будем по простой причине – иначе в статью уж точно не уложимся.
Электронная лампа возникла из электрической. Создал первую электронную лампу Т.А. Эдисон, и произошло это так. Свет в электрических лампах излучался в те времена накаленной угольной нитью. От нити летели во все стороны не только фотоны, но и нечто, оседавшее на баллоне и вызывавшее его потемнение. Эдисон предположил, что летят отрицательно заряженные угольные пылинки. Если ввести в лампу дополнительный электрод, – решил он, – и подать на него положительный относительно нити потенциал, то пылинки будут притягиваться к этому электроду и не будут попадать на баллон.
Но баллоны все равно темнели. Обидно; зато Эдисон обнаружил, что в цепи дополнительного электрода протекает ток. Так в 1883 году он открыл два новых явления: протекание тока через вакуум и термоэмиссию – испускание заряженных частиц нагретыми веществами. Позже эта два явления вместе были названы «эффектом Эдисона». Как практически мыслящий человек (автор более 1000 патентов), он придумал и прибор на основе этих эффектов. Поскольку ток, текущий в цепи дополнительного электрода, сильно зависел от напряжения, приложенного к нити (называемого напряжением накала), Эдисон предложил использовать этот эффект для обнаружения малых изменений напряжения. А вот концы батареи он не перекинул, и то, что в его условиях вакуум пропускает ток только в одном направлении, не обнаружил. Диодный эффект был открыт лишь через 21 год!
Между тем в 1887 году (по некоторым источникам – в 1886-ом) Дж.Дж. Томсон установил, что ток в лампе Эдисона переносят именно электроны, а не ионы. Но, быть может, это свойство именно угля? Нет, если нить была металлической, электронный ток возникал тоже. Он становился особенно велик, если нить покрывали порошком окиси кальция (ну, то есть зубным порошком). Так в 1904 году А. Венельт открыл оксидный катод, которому предстояло через полвека завоевать мир электронных ламп. В том же году Дж.А. Флеминг наконец-то перекинул концы от батареи, подал на дополнительный электрод минус относительно нити и немедленно обнаружил, что ток не идет. Он и создал вакуумный диод.
Однако этот диод был не совсем вакуумным. В 1908 году Ф. Содди обнаружил, что при улучшении вакуума ток уменьшается. Возникло естественное – хотя и, к счастью, неверное – предположение, что в абсолютном вакууме тока не будет совсем. Вакуумная электроника была готова умереть, не родившись. Выяснилось, что уменьшение тока при улучшении вакуума вызвано образованием в лампе отрицательного заряда. А почему он не влиял раньше? Ведь уже летящие через зазор катод-анод электроны имеют отрицательный заряд, отталкивают электроны, только-только вылетевшие из катода, и уменьшают этим ток, текущий через зазор. Но при наличии газа электроны ионизуют его, причем новые электроны начинают двигаться вместе со старыми к аноду, а положительные ионы, имеющие в среднем в 60 000 раз большую массу, уходят из зазора медленно и поэтому создают в нем положительный заряд, компенсирующий заряд электронов. Поэтому при наличии газа суммарный заряд оказывается меньше, а ток больше. Но и без ионной компенсации движение электронов в вакууме оказалось вполне возможно. Первый настоящий именно вакуумный диод был создан в 1913 году У. Кулиджем и в 1915 году С. Дэшманом. Для получения в вакуумных лампах того же тока, что и в лампах с частичной компенсацией пространственного заряда, требовались большие напряжения между катодом и анодом, но зато эти лампы работали стабильнее. Ибо хотя хороший вакуум и труднее получить, чем плохой, но для работы лампы с компенсацией нужен не просто плохой вакуум, а стабильно плохой.
Основная формула, описывающая работу электронных ламп, была получена И. Ленгмюром в 1915 году. Называют ее почему-то не формулой Ленгмюра, а «законом 3/2». Впрочем, человек, сделавший для физики и химии столько, сколько сделал Ленгмюр, не стал бы тратить время на споры о приоритете. Закон звучит так: ток, который протекает через вакуумный зазор, пропорционален площади электродов, напряжению на зазоре в степени 3/2 и обратно пропорционален квадрату ширины зазора. Это при положительном напряжении на аноде относительно катода, когда анод притягивает электроны. При отрицательном напряжении ток не идет. Поэтому диод может быть применен в качестве выпрямителя, то есть прибора, пропускающего ток в одну сторону и не пропускающего в другую, в качестве «нелинейного сопротивления», не подчиняющегося закону Ома и, наконец, в соответствии с идеей Эдисона – для контроля малых изменений напряжения. Из этих трех идей радиотехника использовала первую – активно, вторую – слабее, а третью, кажется, не использовала вовсе.
Однако диод даже не вполне лампа – в нем нет независимого способа управления движением электронов. Существуют ли иные, кроме изменения температуры катода и напряжения на аноде, способы управления движением электронов? Движение электронов зависит от электрических полей, созданных наличием зарядов и потенциалов на любых электродах, стоящих на пути электронного потока или рядом с ним.
В 1906 году Ли де Форест поставил на пути электронов сетку. Теперь управляющий сигнал надо было подавать на нее, а выходным сигналом по-прежнему был анодный ток. На движение электронов в лампе, и, стало быть, на ток анода, теперь влияют два напряжения – на аноде и на сетке. Причем сеточное влияет гораздо сильнее – она ближе к катоду. Величину, которая говорит, во сколько раз изменение напряжения на сетке влияет на ток сильнее, чем изменение напряжения на аноде, называют усилением. Отношение изменений тока к изменению напряжения на сетке – крутизной (не в современном смысле, в в смысле – крутизна характеристики, графика). Крутизна определяет способность лампы усиливать радиосигналы, коэффициент усиления – способность лампы усиливать низкочастотное (звуковое) напряжение. Поэтому в зависимости от предназначения лампы надо бороться (как и следовало ожидать) за разные параметры. Заметим, что это были лампы «с плохим вакуумом», то есть с частичной компенсацией заряда. Настоящий именно вакуумный триод был создан И. Лэнгмюром и Г. Арнольдом в 1915 году.
Для работы первых триодов нужно было анодное напряжение около 100 вольт. Бедные радиолюбители держали под столами батареи по нескольку десятков банок, и несло от них кислотой... Позже, когда радиоаппаратура стала питаться в основном от сетей переменного напряжения, допускающих его изменение путем трансформации, острота проблемы уменьшилась. Но не исчезла совсем, а, кроме того, на путях уменьшения анодного напряжения было найдено и решение проблемы большого усиления.
Почему триоду нужно иметь большое анодное напряжение? Потому, что при этом получается большой анодный ток. Если анодное напряжение уменьшить, то уменьшится ток и, следовательно, крутизна. Как разорвать эту цепочку? Как получить большой анодный ток при малом напряжении? Казалось бы, ответ прямо следует из формулы Ленгмюра – приблизив анод к катоду. Да, но при этом анодное напряжение начинает сильнее действовать на ток и, следовательно (действие-то сетки остается таким же!), уменьшается усиление. То есть хорошо бы и приблизить анод к катоду, и не приблизить его... Наверное, примерно так рассуждали В.И. Коваленков в 1911 году и тот же И. Ленгмюр в 1913 году, которые предложили ввести в триод дополнительную сетку, находящуюся ближе всего к катоду, и подать на нее положительное напряжение. Эти лампы были названы «двухсетками», и они действительно работали при меньших анодных напряжениях – порядка 10...20 В. Но с годами получать высокие напряжения стало легче, и, казалось, век двухсеток кончился.
Второе рождение второй сетки произошло, когда В. Шоттки и А. Холл, по одним источникам – в 1919, а по другим – в 1926 году, предложили расположить вторую сетку не ближе к катоду, а наоборот – ближе к аноду. Прианодная сетка экранировала катод от анода, уменьшала его влияние на ток, и, следовательно, увеличивала усиление. Эта лампа была названа тетродом. Так была решена проблема малого усиления триода. В. Шоттки и А. Холл еще войдут в историю физики – открытием эффекта Шоттки и эффекта Холла, но пока они этого не знают.
Впрочем, и крутизну хочется увеличить. Из формулы Ленгмюра видно, как ее увеличить – приблизить сетку к катоду. На этом пути за двадцать лет (с начала сороковых до конца пятидесятых годов) зазор сетка-катод был уменьшен в 10 раз: с 200 до 20 микрон. Но это потребовало создания технологии изготовления проволоки диаметром 7 микрон (в 7 раз тоньше волоса) и радикального изменения технологии и конструкции ламп. Ведь мало изготовить эту проволоку, надо еще сделать из нее сетку, на что-то намотать, как-то закрепить. Все это было сделано, но лампы с такими сетками были сложны в производстве и дороги. Другой путь – это был опять путь двух сеток: прикатодная сетка с положительным потенциалом увеличивала ток и крутизну.
В 1926 году фирмой «Филипс» был выпущен пентод – лампа с пятью электродами или тремя сетками. Третья сетка находилась между второй и анодом. На нее подавалось напряжение, более низкое и чем на второй сетке, и чем на аноде, чаще всего ее просто соединяли с катодом. Третья сетка была предназначена для борьбы с «динатронным эффектом» – попаданием на вторую сетку электронов, выбитых из анода (этот эффект называется вторичной электронной эмиссией). Она их отталкивала и возвращала домой – на анод.
Вторая сетка была введена для получения большего усиления, третья – для избавления от динатронного эффекта. Но ниоткуда не следует, что их нельзя применять и для чего-нибудь другого. Например, если на одну сетку подать переменное напряжение с частотой f1, а на другую – с частотой f2, то в цепи анода лампы будут протекать токи с частотами nf1 ± mf2, где n и m = 0, 1, 2, 3... (результат должен быть больше нуля). Фильтрами, настроенными на соответствующие частоты, эти токи можно разделить. На «смешивании» частот и выделении разностной частоты f1 – f2, где f1 – частота принимаемого сигнала, а f2 – сигнала, генерируемого в приемнике специальным генератором (гетеродином), основана радиосвязь. Лампа, в которой смешиваются сигналы, называется «смесителем». Существуют лампы с четырьмя сетками (гексод), пятью (гептод) и шестью (октод). В некоторых случаях часть лампы выполняет роль «лампы гетеродина», а часть – «лампы смесителя». В этом случае передача сигнала из гетеродина в смеситель происходит не по проводам, а путем попадания электронов из одной части лампы в другую, то есть током в вакууме.
Как работает обычный триод при подаче на него высокочастотного переменного напряжения? Пока напряжение на сетке больше среднего, на электроны, летящие от катода, действует большое ускоряющее поле. Если напряжение меньше среднего, ускоряющее поле тоже меньше. Если, пока электрон летел, прошел период переменного напряжения, то итоговое воздействие на электрон отсутствует – полпериода его толкали, полпериода тормозили. Итак, на частоте, на которой период переменного напряжения равен времени пролета электрона, лампа работать уже совсем не может. Лучшие СВЧ-лампы работают на частотах до 10 гигагерц. Достигается это уменьшением зазора между катодом и сеткой до 10 микрон – с соответствующим ростом сложности изготовления и стоимости, а также уменьшением надежности и мощности.
С увеличением рабочей частоты возникают и другие проблемы. Поскольку напряжение на сетке изменяется, электроны влетают в зазор сетка-анод с разными скоростями. Время пролета от сетки до анода тоже не равно нулю, и электроны могут «перепутываться» – влетевшие позже, но с большими скоростями, могут обгонять влетевшие раньше, но с меньшими скоростями. В результате будет искажаться форма импульса, если лампа работает в импульсном режиме. Наконец, резонансная частота контура возрастает с уменьшением индуктивности и емкости. Если лампа работает на некоторой частоте, обычно в ее сеточной и анодной цепях применяются контуры, настроенные на эту частоту. Но лампа имеет собственную емкость (между электродами) и собственную индуктивность (вводов). Ни меньше этой емкости, ни меньше этой индуктивности емкость и индуктивность контура сделаны быть не могут.
Это проблемы, связанные с частотой. Есть еще проблемы, связанные с мощностью. Дальность действия радиолокатора и радиопередатчика и способность работать в условиях помех зависят от мощности. Ее можно увеличить либо путем увеличения тока лампы, либо путем увеличения напряжения. Поскольку максимальная плотность тока, отбираемого с катода, ограничена, надо либо увеличивать площадь катода, либо напряжение. И то и другое означает увеличение размеров лампы, поскольку при увеличении напряжения приходится увеличивать зазоры между электродами во избежание электрического пробоя.
Рекомендуем скачать другие рефераты по теме: реферат на тему, скачать реферат бесплатно без регистрации.
Категории:
1 2 3 4 5 | Следующая страница реферата