Океан в капле воды, или Вся техника в одной стекляшке
| Категория реферата: Рефераты по истории техники
| Теги реферата: шпоры по математике, рефераты без регистрации
| Добавил(а) на сайт: Бойков.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Иногда – и это самое интересное – решение бывает промежуточным, когда новая лампа не является просто увеличенной старой, а состоит как бы из нескольких ламп в общей вакуумной оболочке. Иногда эти лампы имеют и еще какие-то общие детали. Например, стандартным решением является наличие в лампе нескольких катодов при одной сетке и одном аноде. Иногда граница между «общим» и «частным» проходит так хитро, что не сразу и разберешься. Например, в многолучевой лампе, которая была предложена В.Ф. Коваленко в 1940 году и А.П. Федосеевым в 1941 году, катод нагрет весь, но покрытие, эмитирующее электроны, заполняет не всю его поверхность, а только участки между стержнями сетки. Поэтому электроны пролетают в основном мимо сетки даже при положительном напряжении на ней.
Одним из направлений развития конструкций ламп были попытки уменьшения количества деталей. В 1934 году Ю.А. Кацман и А.А. Шапошников предложили конструкцию «штабельной лампы». На керамических рамках закреплялись отдельные электроды, потом рамки складывались штабелем, стопкой. Такая лампа могла быть маленькой, ее сборку можно было механизировать. Она была термостойкой (рамки из керамики) и высокочастотной (малые зазоры).
В электронной лампе электроны пролетают сквозь сетки. Представьте себе электронный поток, пронизывающий две близко расположенные сетки. Пока между сетками нет напряжения, стало быть, в зазоре между ними нет поля, каждый электрон вылетает из зазора с той же скоростью, с которой влетает в него. Когда напряжение между сетками есть, скорость электронов будет увеличиваться, если поле между сетками ускоряющее, и уменьшаться, если тормозящее. Что произойдет, если напряжение изменяется синусоидально? Электроны, пересекающие зазор при ускоряющем поле, будут двигаться быстрее тех, которые пересекали зазор при тормозящем поле. В результате электроны начнут собираться в сгустки, состоящие из электронов, пролетевших зазор раньше, но при тормозящем поле, и пролетевших позже, но при ускоряющем поле. Так образуется электронный прибой – электронные волны, накатывающиеся на берег... Электронные сгустки – это что-то мощное, серьезное, почти осязаемое. Так что вроде бы можно малое напряжение преобразовать во что-то большее. Но во что?
Модуляцию скорости мы создали, пропустив электронный поток между двумя сетками. Попробуем использовать ту же систему для отбора энергии от электронных сгустков. Если, скажем, электронные сгустки пролетают через зазор между сетками, в котором имеется тормозящее поле, то из зазора электроны выйдут с меньшими энергиями – значит, часть энергии мы у них отобрали. Надо бы это поле создать... Сейчас мы введем очень важное для техники электровакуумных приборов понятие – «наведенный ток». Пусть внутри зазора, от левого электрода к правому, летит электрон (хоть один, хоть сгусток). По мере полета напряженность поля между левым электродом и сгустком убывает, а между сгустком и правым электродом возрастает. Значит, изменяются и плотности зарядов на электродах и, следовательно, протекает ток в цепи, соединяющей эти электроды. Это и есть наведенный ток. Обратите внимание – электрон не попадает на электрод, а ток в цепи идет.
Этот ток и несет энергию, отданную электронами. Он может заряжать аккумулятор, выделять тепло в сопротивлении или использоваться как-либо иначе. Если электроды соединены сопротивлением, то на нем, согласно закону Ома, при протекании тока возникнет напряжение. Это напряжение имеет такую полярность, что поле тормозит электроны. Иначе и быть не могло – если бы полярность напряжения была бы иной, пучок сам собой бы ускорялся. Как тогда быть с законом сохранения энергии? А так все в порядке – энергия, потерянная пучком, поступает в нагрузку и, если это простое сопротивление, превращается в тепло. Итак, с помощью двухсеточного зазора можно создать у электронного пучка модуляцию по скорости, затем она преобразуется в модуляцию по плотности, и с помощью двухсеточного же зазора у такого пучка можно отнять энергию. Этот прибор изобрели в 1939 году братья Р. и З. Вариан и, независимо, В. Хан и Г. Меткалф. Назвали они его «клистрон» – от греческого слова, означающего ударять или окатывать волной. Позже его стали называть пролетный клистрон, чтобы отличать от другого прибора, о котором мы расскажем немного ниже. Оба эти прибора могут работать на частотах, в 100 раз более высоких, чем лучшие лампы с электростатическим управлением.
Представьте себе, что надо передавать информацию и имеется передатчик, работающий на некоторой частоте f. С какой скоростью можно передавать информацию при наличии такого передатчика? Пусть мы можем управлять передаваемым сигналом, вырезая из него отдельные периоды колебаний. Таким способом можно передавать информацию со скоростью f бит/с (1 бит – это один выбор из двух ситуаций: есть полуволна или нет; для передачи буквенного текста надо 5 бит на букву (если разных букв – 32)). Существует много видов модуляции, и скорости передачи информации с их помощью различны. Но порядок величины будет таким, как мы получили. Чем больше информации мы хотим передать, тем выше нужна рабочая частота, поэтому телевизионные передачи ведут на частотах метрового диапазона и даже на более коротких волнах. Кроме того, высокочастотные электромагнитные колебания используются в радиолокации, для питания ускорителей и для многих других целей, в том числе для нагрева продуктов в микроволновых печках.
Вспомним про проблемы ламп. Вот какими они были: время пролета катод – сетка, время пролета сетка-анод, емкость/индуктивность лампы. Как поступил с этими проблемами клистрон? Уменьшить время пролета можно увеличением скорости электрона. Это и сделано в клистроне. Сначала электрон ускоряется относительно высоким напряжением и лишь затем вводится в двухсеточный управляющий зазор. Время пролета сетка-анод обращено на пользу – именно в это время скоростная модуляция преобразуется в модуляцию по плотности. А что делать с емкостями и индуктивностями? Представим себе контур, настроенный на очень высокую частоту. Конденсатор в нем – две пластины, индуктивность – кусок провода, их соединяющий. У такого контура есть недостаток – он будет сильно излучать в окружающее пространство. Как с этим бороться? Известно как – экранированием. Прокрутим мысленно провод, соединяющий пластины конденсатора, вокруг оси – получим нечто, похожее на тор («бублик»). Вместе с пластинами он образует то, что называется «объемный резонатор». Емкость у него связана с пластинами, а индуктивность – с остальной оболочкой. А как хорошо он сочетается с двухсеточным зазором! Надо только сделать зазор из двух сеток, либо на лампу с двухсеточным зазором надеть снаружи (можно уже вне вакуума) «индуктивную» часть резонатора – тор. Для невооруженного глаза он выглядит пустым изнутри. Но мы-то знаем – внутри у него магнитное поле. Пролетный клистрон можно легко превратить в генератор. Для этого надо вывести часть сигнала из выходного резонатора и вернуть ее во входной. Если сдвиг фаз в самом клистроне и в цепи обратной связи такой, что часть выходного сигнала, возвращаясь на вход, совпадает по фазе со входным сигналом, усилитель может превратиться в генератор.
Заметим, что сигналом является и сам электронный поток, точнее – распространяющиеся в нем электронные сгустки. Что, если заставить их возвращаться во входной резонатор? Пусть, например, вместо второго резонатора стоит «отражатель» – электрод, на который подано отрицательное напряжение. Сгусток подлетит к нему, развернется и полетит назад, к входному зазору. Проходя через входной зазор, такой сгусток вызовет появление электрического поля. Если фаза этого поля такова, что оно будет усиливать модуляцию электронного потока, с каждым пролетом сигнал будет нарастать, прибор начнет генерировать электромагнитное поле. Изменяя напряжение на отражателе, можно управлять временем полета сгустка между первым и вторым проходами через резонатор. Чем больше отрицательное напряжение на отражателе, тем на большем расстоянии от себя он остановит сгусток и заставит вернуться его в зазор. Поэтому у отражательного клистрона частота генерируемых колебаний меняется при изменении напряжения на отражателе. Естественно – он генерирует на той частоте, на которой выполняется условие совпадения фаз, а время полета сгустка и фаза его прибытия зависят от напряжения на отражателе. Но откуда берется самый первый сгусток, самая первая неоднородность потока, с которой начинается лавинное нарастание сигнала, переходящее в генерацию? Самые первые неоднородности – это флуктуации электронного потока, случайные неоднородности, которые есть всегда. Хотя бы потому, что поток заряда не непрерывен – он состоит из отдельных электронов.
Отражательный клистрон был создан в 1940 году В.Ф. Коваленко и, независимо от него, Н.Д. Девятковым, Е.Н. Данильцевым, И.В. Пискуновым. В течение десятилетий он был основным типом генератора сверхвысокочастотных (СВЧ) колебаний. Позже полупроводниковые приборы составили отражательному клистрону серьезную конкуренцию. Однако в диапазоне миллиметровых длин волн ЭВП по-прежнему «дают фору» полупроводникам.
Здесь мы должны сделать небольшое чисто человеческое отступление. Во многих книгах об изобретении отражательного клистрона писали, что он был изобретен академиком Девятковым. И все. И не врали, и правды не говорили. Успешно замалчивалась роль Вадима Коваленко и в других случаях. А он внес большой вклад в развитие советской вакуумной электроники: достаточно сказать, что в некоторые годы половина статей в журнале «Электроника СВЧ» – главном журнале отрасли – содержала или ссылки на его работы, или благодарности ему «за полезное обсуждение», «за критику» и т.п. И это при том, что своих оригинальных публикаций у него было немного. Он поразительно умел угадывать важные проблемы, успешно решал их и писал ясные статьи – в смысле методики изложения многие его работы остаются непревзойденными. Мы все делали одно дело, откуда же бралась зависть? Неужели потому, что он – умный человек и великолепный рассказчик – пользовался большим успехом у женщин? Мы все равны перед историей, она все расставит по своим местам, споры о приоритете не нужны тем, кого все равно давно нет с нами, а когда-то они не потребуются и нам. Наша честность – в этих вопросах тоже – нужна нам самим и сейчас.
Проблем в области конструкции и технологии ЭВП СВЧ оказалось немало. Проще сказать, что там все – проблема. Во-первых, сетки, образующие зазор в резонаторе. Какая-то доля электронов оседает на этих сетках, мигом превращая всю свою кинетическую энергию в тепловую. Сетки делали и тугоплавкие, и с тонкими высокими ребрами (чтобы они лучше передавали тепло на охлаждаемую часть резонатора), но все равно – в мощных приборах сеток как таковых нет. Электронный пучок летит через отверстие – как бы через сетку с одним большим окном.
Следующая проблема – «окно для вывода энергии». Мощные электромагнитные колебания генерируются в вакууме, а нужны они нам снаружи прибора, в воздухе. Казалось бы, особой проблемы нет – любое стекло или керамика прозрачны для электромагнитного излучения и «не прозрачны» для воздуха. Но часть электромагнитного излучения поглощается стеклом или керамикой и нагревает ее. Керамика – материал сам по себе термостойкий, однако при нагреве увеличивается ее проводимость, она начинает сильнее поглощать электромагнитное излучение, еще сильнее нагреваться и так далее. Этот процесс называется тепловым пробоем, а кончается он сквозным проплавленным отверстием, соединяющим вакуумный объем прибора и атмосферу.
Многие ЭВП СВЧ работают в импульсном режиме. Это значит, что электронный поток обрушивается на поверхность коллектора импульсами – скажем, 1 мкс ток идет, а потом 1 мс тока нет. Здесь, на коллекторе, кончается короткая, но яркая биография электрона – в вакууме он ускорялся, тормозился и генерировал, а в металле есть только безликий электронный газ, там электроны не отличаются друг от друга. Но напоследок электрон мстительно делает вот что – отдав остаток энергии на нагрев коллектора, он способствует его разрушению. Действительно, когда ток идет, поверхность коллектора нагревается, в паузе – остывает. При нагреве и охлаждении возникают термические напряжения, в материале коллектора понемногу накапливаются дислокации, потом возникают трещины, и в итоге коллектор начинает разрушаться.
Что касается окон для вывода энергии, то они перегреваются и разрушаются из-за поглощения в них энергии электромагнитной волны. Казалось бы, созданием диэлектриков с очень малой проводимостью эту задачу можно решить. Увы, электрон, ударяясь о любой материал, выбивает из него вторичные электроны. Ну и что? Пусть даже шальной электрон ударился в керамическое окно вывода энергии – ну выбьет он сколько-то вторичных электронов, ну разлетятся они куда попало, и все. Но, во-первых, выбьет он вторичных электронов довольно много – несколько штук. Во-вторых, раз окно это предназначено для вывода энергии, то, значит, вокруг него и в нем самом всегда есть сильное электромагнитное поле. Вторичные электроны ускорятся этим полем, наберутся от него энергии, врежутся в керамику, выбьют из нее еще больше вторичных электронов, которые опять ускорятся полем, и пошло-поехало. Электронная лавина нарастает, энергия отнимается от электромагнитной волны и идет на нагрев окна. Такого издевательства – а оно называется высокочастотным вторично-электронным разрядом – не выдерживает самая высокотемпературная керамика. Решение было найдено, но об этом – позже. А пока поговорим о другом приборе.
Возможно, что изобретатель лампы бегущей волны Р. Компфнер придумал ее в 1944 году, поднимаясь по какой-нибудь лестнице. Особенно удобно было бы сделать это изобретение, если бы в середине лестничного проема медленно двигался лифт, а человек, быстро поднимавшийся по лестнице, мог бы заглядывать в кабину. Конечно, восстановить, как именно было сделано изобретение, трудно. Технический детектив в чем-то, по-видимому, сильно отличается от просто детектива, ибо хороших детективов много, а хороших технических детективов мало.
Представьте себе, что лифт движется чуть быстрее человека и из него подталкивают бегущего по винтовой лестнице человека – быстрее, быстрее! Согласно третьему закону Ньютона, на лифт будет действовать сила, направленная против движения, он будет тормозиться и отдавать свою энергию человеку, бегущему по лестнице. В итоге их скорости уравняются. Не обвивайся лестница вокруг шахты лифта, ничего бы не получилось – человек движется по прямой лестнице быстрее лифта. А если она обвивается, длина ее увеличивается. Можно подобрать угол наклона витков спирали («лестницы») и скорость электронов («лифта») так, чтобы электромагнитная волна, бегущая по спирали, имела ту же скорость перемещения вдоль оси спирали, что и электроны.
Возьмем проволоку, свернем ее в спираль и запустим в один ее конец электромагнитную волну. По оси же пропустим электронный пучок и начнем варьировать энергию (скорость) электронов. Когда энергия электронов будет такая, что скорость их станет чуть больше скорости волны («осевой» скорости), начнется перекачка энергии от электронов к волне, и с выходного конца спирали мы получим более мощную волну и хилые – с уменьшенной энергией – электроны. В лампе бегущей волны, как и в клистроне, происходит преобразование модуляции по скорости в модуляцию по плотности. Только напряженность поля у спирали меньше, чем в резонаторе (в резонаторе есть резонанс). Поэтому нужен большой путь – и электронам и волне надо пройти много витков спирали, чтобы возникла заметная модуляция, а потом, после преобразования модуляции, волна начала усиливаться, отбирая энергию от собирающихся в сгустки электронов. Собираются электроны в те места волны, где поле меняет знак – сзади оно ускоряющее, спереди тормозящее, – как люди перед входом в метро в час пик.
Можно сделать из клистрона и ЛБВ гибридный прибор, взяв один конец от одного прибора, а другой – от другого. Если создавать исходную модуляцию, как в ЛБВ, потом давать электронам подрейфовать, а снимать сигнал с пучка резонатором, как в клистроне, получится один гибридный прибор. Если же создавать исходную модуляцию, как в клистроне, а снимать сигнал с пучка, как в ЛБВ, получится другой гибридный прибор. Все эти приборы уже придуманы. Как бы узнать, какие приборы еще не придуманы? Ниже мы вернемся к этому интересному вопросу.
Мы начали с аналогии между лестницей и спиральной замедляющей системой. Раньше всех в ЛБВ была использована в качестве замедляющей системы спираль. Но время шло, требования к мощности и рабочей частоте ЛБВ увеличивались. А спираль трудно охлаждать – она закрепляется на диэлектрических опорах, которые проводят тепло плохо. При длине волны меньше 5 мм сделать спираль становится трудно. Для работы в области больших мощностей и малых длин волн применяются другие замедляющие системы. Такие системы состоят из отдельных резонаторов, связанных отверстиями, через которые электромагнитное поле проникает из одного в другой.
ЛБВ, как и клистрон, можно превратить в генератор. По спирали волна может распространяться в обе стороны. Идя в одну сторону, она усиливается, подкачиваясь от пучка, а в другую бежит сама по себе, понемногу затухая. Нельзя ли сделать некое подобие ЛБВ, в которой будет усиливаться обратная волна? Тогда замыкание цепи обратной связи будет автоматическим, даже без учета отражений на концах: в одну сторону энергия будет переноситься электронами, а обратно – волной. И мы получим генератор. Но можно ли сделать так, чтобы электроны отдавали энергию волне, спешащей навстречу им? Представьте себе, что электронный пучок летит с одной стороны от металлического экрана с окнами, а волна бежит с другой. Пусть электронный сгусток, пролетая мимо окна, увидел там тормозящее поле, притормозился, отдал часть энергии и полетел дальше. У следующего окна он опять увидел тормозящее поле и опять пострадал. Вы сразу же видите, что таким способом можно усиливать волну, не обязательно имеющую ту же скорость, что и электронный сгусток. Важно лишь, чтобы электрон, пробегая мимо окон, видел в них одинаковые фазы колебаний.
Сгусток будет в следующем окне видеть не то место волны, с которым взаимодействовал в предыдущем окне, а другое. Но что с того? Он будет отдавать энергию, а волна будет усиливаться. При этом электрону безразлично, куда летела эта волна – с ним или навстречу.
Конструирование – всегда компромисс. Если больше мощность – то меньше диапазон частот, а если нет – то короче срок службы или дороже прибор. И так одно за другое, другое за третье, пятое и девяносто девятое... При определенной длине волны резонаторы в клистроне и спираль в ЛБВ должны иметь определенные размеры. Какая-то доля электронного пучка перехватывается сеткой в зазоре резонатора или спиралью. Пучок перехватывается – мощность выделяется – деталь нагревается – металл испаряется или плавится. Если плавится, то все ясно. А если испаряется, то пары оседают или на изоляторах, превращая их в проводники, или на катоде, изменяя его состав до потери работоспособности.
Что делать? Во-первых, можно искать конструкции, в которых меньше плотность мощности, выделяющейся на поверхностях электровакуумных приборов. Ну конечно, электронный пучок не должен перехватываться тем, чем не должен. Но при попытке сжать пучок посильнее он теряет ламинарность. Такой пучок не удается сильно затормозить (рекуперировать) на коллекторе, кпд прибора падает. Не будем разматывать эти клубки до девяносто девятого слоя, но поверьте – цифра не преувеличена. В лампе бегущей волны все связано одно с другим. Как и в других приборах. Жизнь вообще так устроена. И не ситуация в ЛБВ – самая трудная для понимания.
Прибор, называемый магнетроном, был изобретен... о, это длинная история! Дело в том, что в отличие от ЛБВ и клистрона, изобретение магнетрона состояло из нескольких этапов – один элемент, потом второй, третий и так далее. А.У. Холл – 1921 год, Яга и Окабе – 1928 год (это тот самый Яга, который «антенна Уда-Яги» – посмотрите на крышу любого дома), Г. Бут и Дж. Рэндалл – 1939 год, наконец – Н.Ф. Алексеев, Д.Е. Маляров и В.П. Илясов в 1939 году (еще раз о приоритете – во многих книгах про последнего не упоминают, в некоторых – неправильно пишут его фамилию). Некоторые ЛБВ интересны тем, что изготавливаются лишь в нескольких десятках экземпляров (ЛБВ для спутников связи), а магнетрон интересен тем, что это первый действительно массовый СВЧ-прибор. Ибо те магнетроны, которые используются в СВЧ-печах, впервые начали выпускаться в Японии миллионами. Традиционная японская кухня предпочитает варить, парить и тушить, а не жарить. Румяная корочка (содержащая, между прочим, канцерогенные продукты термолиза низкосортных жиров) – не ее цель. Так вот, СВЧ-печи как раз и делают нечто похожее на варку, парку и тушение, поскольку электромагнитная волна сверхвысокой частоты поглощается всем объемом сразу.
Магнетрон – это прибор со «скрещенными полями»: с магнитным и электрическим полями, перпендикулярными друг другу. Электрон вылетает из катода с маленькой скоростью и начинает двигаться к аноду. Пока электрон пролетел мало и скорость его мала, сила, действующая со стороны магнитного поля, тоже мала, и электрон летит почти по прямой. По мере приближения к аноду скорость электрона растет, сила Лоренца увеличивается, траектория изгибается. При малой индукции магнитного поля электрон отклонится от прямой, но анода достигнет. При большой индукции поля траектория электрона анода не достигает, он описывает кривую и возвращается к катоду, уменьшив свою скорость до нуля – согласно закону сохранения энергии.
Рекомендуем скачать другие рефераты по теме: реферат на тему, скачать реферат бесплатно без регистрации.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата