Алгебра матриц
| Категория реферата: Рефераты по математике
| Теги реферата: мировая война реферат, сообщения в одноклассниках
| Добавил(а) на сайт: Zaporozhec.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Рассмотренные операции называются линейными.
Отметим некоторые свойства операций.
Пусть А,В,С – матрицы одинакового размера; a,b - действительные числа.
А+В = В+А – коммутативность сложения.
(А+В)+С = А+(В+С) – ассоциативность сложения.
Матрица О, состоящая из нулей, играет роль нуля: А+О=А.
Для любой матицы А существует противоположная –А, элементы которой отличаются от элементов А знаком, при этом А+( -А)=О.
a(bА) = (ab)А = (aА)b. 6. (a+b)А = aА+bА.
7. a(А+В) = aА+aВ. 8. 1* А = А. 9. 0 * А = 0.
Умножение матриц
В матричной алгебре важную роль играет операция умножения матриц, это весьма своеобразная операция.
Определение. Произведением матрицы А=(аij) размера и прямоугольной матрицы B=(bij) размера называется прямоугольная матрица С=(сij) размера , такая что cij=ai1+b1j+ ai2+b2j+…+ aik+bkj; , .
Таким образом, элемент произведения матриц А и В, стоящий в i-ой строке и j-ом столбце, равен сумме произведений элементов i-ой строки первой матрицы А на соответствующие элементы j-ого столбца второй матрицы В т.е.
.
Произведение С=АВ определено, если число столбцов матрицы А равно числу строк матрицы В. Это условие, а также размеры матриц можно представить схемой:
Очевидно, что операция умножения квадратных матриц всегда определена.
Примеры. Найдем произведения матриц АВ и ВА, если они существуют.
1. , .
2. , .
Рекомендуем скачать другие рефераты по теме: сочинение базаров, как оформить реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата