Алгоритм компактного хранения и решения СЛАУ высокого порядка
| Категория реферата: Рефераты по математике
| Теги реферата: баллов, прочитать сообщение
| Добавил(а) на сайт: Аюшиев.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
делим на коэффициент , в результате получаем уравнение
Затем из каждого из остальных уравнений вычитается первое уравнение, умноженное на соответствующий коэффициент . В результате эти уравнения преобразуются к виду
первое неизвестное оказалось исключенным из всех уравнений, кроме первого. Далее в предположении, что , делим второе уравнение на коэффициент и исключаем неизвестное из всех уравнений, начиная со второго и т.д. В результате последовательного исключения неизвестных система уравнений преобразуется в систему уравнений с треугольной матрицей
Совокупность проведенных вычислений называется прямым ходом метода Гаусса.
Из -го уравнения системы (2) определяем , из ()-го уравнения определяем и т.д. до . Совокупность таких вычислений называют обратным ходом метода Гаусса.
Реализация прямого метода Гаусса требует арифметических операций, а обратного - арифметических операций.
1.2 Итерационные методы решения СЛАУ
Метод итераций (метод последовательных приближений).
Приближенные методы решения систем линейных уравнений позволяют получать значения корней системы с заданной точностью в виде предела последовательности некоторых векторов. Процесс построения такой последовательности называется итерационным (повторяющимся).
Эффективность применения приближенных методов зависят от выбора начального вектора и быстроты сходимости процесса.
Рассмотрим метод итераций (метод последовательных приближений). Пусть дана система n линейных уравнений с n неизвестными:
Ах=b, (14)
Предполагая, что диагональные элементы aii 0 (i = 2, ..., n), выразим xi через первое уравнение систем x2 - через второе уравнение и т. д. В результате получим систему, эквивалентную системе (14):
Обозначим ; , где i == 1, 2, ...,n; j == 1,2,..., n. Тогда система (15) запишется таким образом в матричной форме
Решим систему (16) методом последовательных приближений. За нулевое приближение примем столбец свободных членов. Любое (k+1)-е приближение вычисляют по формуле
Если последовательность приближений x(0),...,x(k) имеет предел , то этот предел является решением системы (15), поскольку в силу свойства предела , т.е. [4,6].
Метод Зейделя.
Метод Зейделя представляет собой модификацию метода последовательных приближений. В методе Зейделя при вычислении (k+1)-го приближения неизвестного xi (i>1) учитываются уже найденные ранее (k+1)-е приближения неизвестных xi-1.
Пусть дана линейная система, приведенная к нормальному виду:
Рекомендуем скачать другие рефераты по теме: bestreferat ru, особенности реферата.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата