Бесконечные антагонистические игры
| Категория реферата: Рефераты по математике
| Теги реферата: курсовая работа по менеджменту, деловое общение реферат
| Добавил(а) на сайт: Boris.
1 2 3 4 5 6 7 | Следующая страница реферата
Бесконечные антагонистические игры
Определение бесконечной антагонистической игры
Естественным обобщением матричных игр являются бесконечные антагонистические игры (БАИ), в которых хотя бы один из игроков имеет бесконечное количество возможных стратегий. Мы будем рассматривать игры двух игроков, делающих по одному ходу, и после этого происходит распределение выигрышей. При формализации реальной ситуации с бесконечным числом выборов можно каждую стратегию сопоставить определённому числу из единичного интервала, т.к. всегда можно простым преобразованием любой интервал перевести в единичный и наоборот.
Напоминание. Пусть Е – некоторое множество вещественных чисел. Если существует число y, такое, что x £ y при всех хÎЕ (при этом y не обязательно принадлежит Е), то множество Е называется ограниченным сверху, а число y называется верхней границей множества Е. Аналогично определяется ограниченность снизу и нижняя граница множества Е. Обозначаются верхняя и нижняя границы соответственно через sup Е и inf Е соответственно.
Пример. Пусть множество Е состоит из всех чисел вида , n = 1,2, ... Тогда множество Е ограничено, его верхняя грань равна 1, а нижняя 0, причём 0ÏЕ , а 1ÎЕ.
Для дальнейшего изложения теории игр этого класса введём определения и обозначения : [0; 1] – единичный промежуток, из которого игрок может сделать выбор; х – число (стратегия), выбираемое игроком 1; y – число (стратегия), выбираемое игроком 2; Мi(x,y) – выигрыш i-го игрока; G (X,Y,M1,M2) – игра двух игроков, с ненулевой суммой, в которой игрок 1 выбирает число х из множества Х, игрок 2 выбирает число y из множества Y, и после этого игроки 1 и 2 получают соответственно выигрыши M1(x, y) и M2(x, y). Пусть, далее, G (X,Y,M) – игра двух игроков с нулевой суммой, в которой игрок 1 выбирает число х, игрок 2 – число y, после чего игрок 1 получает выигрыш М(x, y) за счёт второго игрока.
Большое значение в теории БАИ имеет вид функции выигрышей M(x, y). Так, в отличии от матричных игр, не для всякой функции M(x, y) существует решение. Будем считать, что выбор определённого числа игроком означает применение его чистой стратегии, соответствующей этому числу. По аналогии с матричными играми назовём чистой нижней ценой игры величину
V1 = M(x, y) или V1 = M(x, y),
а чистой верхней ценой игры величину
V2 = M(x, y) или V2 = M(x, y),
Для матричных игр величины V1 и V2 всегда существуют, а в бесконечных играх они могут не существовать.
Естественно считать, что, если для какой-либо бесконечной игры величины V1 и V2 существуют и равны между собой (V1 = V2 = V), то такая игра имеет решение в чистых стратегиях, т.е. оптимальной стратегией игрока 1 есть выбор числа xoÎX и игрока 2 – числа yoÎY, при которых M(xo, yo) = V, в этом случае V называется ценой игры, а (xo, yo) – седловой точкой в чистых стратегиях.
Пример 1. Игрок 1 выбирает число х из множества Х = [0; 1], игрок 2 выбирает число y из множества Y = [0; 1]. После этого игрок 2 платит игроку 1 сумму
M(x, y) = 2х2 - y2.
Поскольку игрок 2 хочет минимизировать выигрыш игрока 1, то он определяет
(2x2 - y2) = 2х2 - 1,
т.е. при этом y = 1. Игрок 1 желает максимизировать свой выигрыш, и поэтому определяет
(M(x, y)) = (2х2 - 1) = 2-1 = 1,
который достигается при х = 1.
Итак, нижняя цена игры равна V1 = 1. Верхняя цена игры
V2 = ((2х2 - y2)) = (2 - y2) = 2-1 = 1,
т.е. в этой игре V1 = V2 = 1. Поэтому цена игры V = 1, а седловая точка (1;1).
Пример 2. Игрок 1 выбирает хÎX = (0; 1), игрок 2 выбирает yÎY = (0; 1). После этого игрок 1 получает сумму
M(x, y) = x + y
за счёт игрока 2. Поскольку Х и Y - открытые интервалы, то на них V1 и V2 не существуют. Если бы Х и Y были замкнутые интервалы, то, очевидно, было бы следующее :
V1 = V2 = 1 при xo = 1, yo = 0.
С другой стороны, ясно, что, выбирая х достаточно близкое к 1, игрок 1 будет уверен, что он получит выигрыш не меньше, чем число, близкое к цене игры V = 1; выбирая y близкое к нулю, игрок 2 не допустит, чтобы выигрыш игрока 1 значительно отличался от цены игры V = 1.
Рекомендуем скачать другие рефераты по теме: сочинение рассуждение, шпаргалки по математике.
Категории:
1 2 3 4 5 6 7 | Следующая страница реферата