Две замечательные теоремы планиметрии
| Категория реферата: Рефераты по математике
| Теги реферата: контрольные 7 класс, бюджет реферат
| Добавил(а) на сайт: Канаев.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
1) идет речь об отношениях отрезков(иногда завуалированном: доказать равенство отрезков, доказать что точка является серединой отрезка и т.п.);
2) если на чертеже имеются элементы, присутствующие в теореме Менелая (треугольник и прямая, пересекающая его стороны или их продолжения).
Конечно есть случаи когда применение теоремы Менелая в решении не очевидно и требует дополнительных построений.
Заметим также, что иногда полезно применять обратную теорему (в частности, если нужно доказать, что какие-то точки лежат на одной прямой).
Примеры решения задач.
Начнем с достаточно простых.
1. Площадь треугольника АВС равна S. Отрезок АМ поделил сторону ВС в отношении ВМ:МС=4:3, а отрезок ВN поделит сторону АС в отношении АN:NС=5:3. Найдите площадь четырехугольника NKМС (K-точка пересечения АМ и ВN).
Решение:
SMKNC=SBNC-SBKM. Поэтому нам нужно найти площади треугольников NВС и KВМ(выразить их через S). Площадь первого из них найти просто: так как N делит сторону АС как 3:8. А так как у треугольников АВС и NВС высоты из В совпадают, то SNBC=SABC=S. Найдем теперь SBKM. Так как треугольник NВС и ВKМ имеют общий угол В, их площади относятся как произведения сторон, прилежащих к вершине В: SBKM:SNBC=(BKЧBM):(ВNЧBC)=BK/BNЧBM/BC.
Второе отношение легко найти из условия задачи: ВМ:ВС=4:7.
Для того, чтобы найти отношение ВK:ВN воспользуемся теоремой Менелая: запишем её для треугольника NВС и точек М, K и А:
Второе и третье отношения нам известны, подставим их:
и
Подставив найденные отношения в приведенную выше формулу, получим:
,
зная площадь треугольника NВС (S) находим площадь треугольника ВKМ:
Теперь легко найти SMKNC: SMKNC= SBNC-SBKM=S-S=S.
Для самостоятельного решения можно предложить аналогичную задачу в более сложной редакции.
2. Площадь треугольника АВС равна S. Отрезки, проведенные из вершины В поделили сторону АС в отношении 1:2:3 (считая от А ). Отрезки, проведенные из вершины С, поделили сторону АВ в отношении 2:3:4 ( считая от А ). Найдите площадь четырехугольника, который “вырезали” из треугольника АВС четыре данных отрезка.
Следующая задача была предложена И.Ф. Шарыгиным во втором туре олимпиады в 1995 году для решения учащимся 10-11 классов.
3. Вокруг четырехугольника АВСD можно описать окружность. Пусть прямые АВ и СD пересекаются в точке М, а прямые ВС и АD в точке K (точки В и D лежат на отрезках АМ и АK соответственно). Пусть Р- проекция точки М на прямую АМ. Докажите, что прямая LР делит диагональ ВD пополам.
Решение: Совершенно естественным будет рассмотреть треугольник АDВ и
М
В
Рекомендуем скачать другие рефераты по теме: quality assurance design patterns системный анализ, банк курсовых.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата