Интеграл по комплексной переменной
| Категория реферата: Рефераты по математике
| Теги реферата: скачать доклад, семейные реферат
| Добавил(а) на сайт: Жевлаков.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
Поскольку
, то выражение можно представить как сумму бесконечно убывающей геометрической прогрессии со знаменателем , т.е. :
(12)
Представим равномерно сходящимся рядом в круге радиуса r, умножая (12) на 1/(2pi) и интегрируя по L при фиксированном Z, получим : слева интеграл (13) который равен f (Z), а справа будет сумма интегралов :
Обозначая , получим : (14)
Это разложение функции f (Z) в круге R в ряд Тейлора. Сравнивая (14) с рядом (2) находим, что (15)
ТЕОРЕМА 2.
Если однозначная функция f(Z) аналитична вне круга с радиусом r с центром в точке Z0 для всех Z выполняется неравенство r < |Z-Z0 |, то она представляется рядом :
(16)
где h - ориентированная против часовой стрелки окружность радиуса r (сколь угодно большое число). Если обозначить (17) , получим :
(18)
ТЕОРЕМА 3.
Если однозначная функция f(Z) аналитическая в кольце Z< |Z-Z0 |<R, где 0£ Z<R<¥ , то она раскладывается в сходящийся степенной ряд :
(19)
f1 и f2 можно представить в виде двух рядов :
(20)
(21)
Ряд (19) – ряд Лорана, при этом ряд (20) сходится в круге радиуса R, ряд (21) сходится вне круга радиуса R функции f2(Z). Общая область сходимости ряда – кольцо между r и R.
f1(Z) – правильная часть.
f2(Z) – главная часть ряда Лорана.
Ряд Тейлора – частный случай ряда Лорана при отсутствии главной его части.
Классификация изолированных особых точек. Вычеты.
Определение 1. Особой точкой функции f(Z) определенной в области (замкнутой) G, ограниченной Жордановой кривой, называется точка Z=Z0 Î G в которой аналитичность функции f1(Z) нарушается. Рабочая точка Z=Z0 функции f(Z), ограниченной в круге |Z-Z0|<R называется изолированной, если функция f(Z) в каждой точке этого круга аналитична, кроме самой точки Z=Z0. В зависимости от поведения функции f(Z) в окрестности изолированных особых точек последние классифицируются на :
Рекомендуем скачать другие рефераты по теме: конспект урока 7 класс, реферат религия.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата