История математики. Александрийская школа
| Категория реферата: Рефераты по математике
| Теги реферата: баллов, дипломная работа исследование
| Добавил(а) на сайт: Бакрылов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата
Волей богов шестую часть жизни он прожил ребенком,
И половину шестой встретил с пушком на щеках.
Только минула седьмая, подружкою он обручился.
С ней пять лет проведя, сына дождался мудрец.
Только полжизни отцовской возлюбленный сын его прожил.
Отнят он был у отца ранней могилой своей.
Дважды два года родитель оплакивал тяжкое горе.
Тут и увидел предел жизни печальной своей.
Диофант написал сочинение, названное им «Арифметика». Это сочинение резко отличается по своему характеру от известных нам других математических работ древних греков. Главное отличие заключается в том, что изложение его идет чисто аналитическим путем, хотя и вводится иногда геометрическая терминология. «Арифметика» Диофанта включает в себя главным образом вопросы алгебры и теории чисел. Надо отметить, что Диофант не излагает обобщенных методов для решения тех или иных вопросов, а к решению каждого отдельного вопроса подходит с особым методом. Это выявляет огромные математические способности Диофанта, но сильно снижает научную ценность его труда- Из 13 книг «Арифметики» до нашего времени сохранилось только 6. В них Диофант рассматривает решение уравнений 1-й и 2-й степени, причем основное внимание обращает на неопределенные уравнения.
Алгебра Диофанта должна быть отнесена к так называемому периоду «синкопированной алгебры», то есть к тому времени, когда в алгебр переходили от чисто риторического изложения (то есть словесного) к использованию более кратких записей при помощи сокращенных слов и некоторых символов. Так, для изображения неизвестного числа Диофант вводит обозначение S', а когда это неизвестное употребляется во множественном числе, то упомянутое обозначение удваивается. Для каждой степени неизвестного вводились соответствующие синкопированные обозначения. Для обозначения вычитания употребляется знак , а для равенства — буква I. Уменьшаемое писалось раньше вычитаемого, а числовые коэффициенты — после неизвестных. Непосредственное следование одной записи за другой означало действие сложения.
Отрицательные числа Диофанту известны не были, но когда приходилось умножать разность двух чисел на разность двух других чисел, то Диофант пользовался, правилом: «отнимаемое число, будучи умножено на отнимаемое, дает прибавляемое, а, будучи умножено на прибавляемое, дает отнимаемое».
При решении уравнений Диофант признавал только положительные рациональные ответы, и притом для квадратного уравнения он всегда вычислял только один ответ, если уравнение имело два рациональных и положительных корня. Каким методом он решал квадратные уравнения, неизвестно, так как в сохранившихся до нашего времени книгах этого объяснения не дано. Для решения уравнения 1-й степени Диофант прибегал к приемам, описанным им следующим образом: «Если теперь в какой-нибудь задаче те же степени неизвестного встречаются в обеих частях уравнения, но с разными коэффициентами, то мы должны вычитать равные из равных, пока не получим одного члена, равного одному числу. Если в одной или в обеих частях есть члены вычитаемые, то эти члены должны быть прибавлены к обеим частям так, чтобы в обеих частях были только прибавляемые. Затем снова нужно отнимать равные от равных, пока не останется только по одному члену с каждой стороны». Таким путем Диофант достигал того, чего мы добиваемся перенесением известных членов в одну сторону равенства, а неизвестных — в другую, приведением подобных членов и делением на коэффициент при неизвестном. При этом надо отметить, что Диофант, как и все древние математики, избегал действия деления, заменяя его повторным вычитанием.
Сочинения Диофанта были отправной точкой для теоретико-числовых исследований Пьера Ферма, Л. Эйлера, К. Гаусса и других математиков. Именем Диофанта названы три больших раздела :теория диофантовых уравнений (алгебраические уравнения или системы алгебраических уравнений с рациональными коэффициентами, решение которых отыскивается в целых и рациональных числах), дифантовый анализ (или диофантова геометрия; область математики, посвященная изучению диофантовых уравнений методами алгебраической геометрии) и теория диофантового приближения (раздел теории чисел, в котором изучаются приближения нуля значениями функций от конечного числа целочисленных аргументов).
2.6. Теон и Гипатия
Учеными, завершившими цикл математиков Александрийской школы, были Теон (IV в.) и его дочь Гипатия (370—415).
Теон проделал большую работу, комментируя труды Евклида и Птолемея. Что же касается Гипатии, то, по отзывам историков, она обладала большими знаниями в области математики и философии и комментировала труды Архимеда. Диофанта и Аполлония. Она является первой известной в истории математики женщиной-математиком. Ей принадлежат также философские труды по толкованию Платона, Аристотеля я других греческих философов. До нашего времени не сохранилось ни одного из трудов Гипатии. Высокая ученость и красноречие, которыми обладала Гипатия, ее деятельное участие в общественных делах города создали ей популярность в Александрии, но вместе с тем вызвали ненависть со стороны христианских религиозных фанатиков к ученой «язычнице». В 415 г. она по подстрекательству епископа Кирилла была растерзана толпой христианских изуверов. Последователи и ученики Гипатии, которым удалось спастись от преследования, бежали в Афины.
ЕВКЛИД Александрийский (предположительно 330—277 до н.э.) — математик Александрийской школы Древней Греции, автор первого дошедшего до нас трактата по математике. Е. (возможно) получил образование в Академии Платона (Афины). Свои труды Е. писал по единой схеме в форме дедуктивно систематизированных обозрений открытий древнегреческих математиков классического периода. Известны такие работы Е. по математике, как трактаты "О делении фигур", "Конические сечения" (в четырех книгах), "Феномены" (посвященные |
сферической геометрии), "Поризмы", а также работы по астрономии, музыке и оптике, в которых ведущая роль отводилась математике. В сочинениях Е. "Оптика" и "Катоптрика" — хронологически первых систематических исследованиях свойств лучей света — рассматривались проблемы зрения и его применения для определения размеров различных предметов, построена теория зеркал. Эти сочинения были математическими и по содержанию, и по структуре: основное место в них, как и в "Началах", отводилось теоремам, аксиомам и определениям. В своем главном труде "Начала" (латинизированное — "Элементы") Е. в 15 книгах изложил основные свойства пространства и пространственных фигур, т.е. планиметрию, стереометрию и элементы теории чисел как подведение итогов предыдущего развития математики в Древней Греции и закладку оснований для дальнейшего развития математики. В книге Е. "Начала" математика выступала, пишет М.Клайн, "...как идеальная версия того, что составляло содержание известного нам реального мира...". Каждая книга "Начал" начинается с определений. В первой книге "Начал" приведены постулаты и аксиомы, за ними расположены в строгом порядке теоремы и задачи на построение (так, что доказательство или решение чего-либо последующего опирается на предыдущие). Там же введены 23 предварительных определения объектов геометрии. Были введены определения угла, плоскости, квадрата, круга, сферы, призмы, пирамиды, пяти правильных многогранников и др.
2.7.1.«Начала» Евклида.
2.7.1.1 Развитие геометрии до Евклида.
Геометрия – один из древнейших разделов математики.
Наибольшего развития геометрических знаний достигли древневосточные цивилизации – Египет, Вавилон, Индия, Китай. Говорить о геометрии как науке на этой стадии нельзя – это была эпоха предварительного накопления геометрических сведений.
В VII в. до н.э. благодаря торговле геометрические знания достигли Греции. Здесь геометрия получила широкое развитие, которое можно разделить на три периода:
1. (VII – VI в. до н. э.) Период является поворотным в развитии геометрии, основателем и представителем этого периода является Фалес Милетский. Греки впервые стали логически доказывать предложения геометрии в общем виде. Фалесу приписывают доказательство следующих теорем:
Рекомендуем скачать другие рефераты по теме: изложение по русскому 9 класс, титульный курсовой работы.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата