К решению теоремы Ферма
| Категория реферата: Рефераты по математике
| Теги реферата: реферат личность, большой реферат
| Добавил(а) на сайт: Jablonov.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
Из которых следует : искажение треугольников при n>2 обусловлено изменением угла С от 90о при n=2 до 60о при n→∞ при этом треугольники превращаются из прямоугольных в остроугольные и в пределе – в равносторонние. В остроугольных треугольниках нет целых решений уравнений Ферма т.к. их стороны сформированы нецелыми числами. Решение теоремы Ферма в целых числах присуще только прямоугольным проекциям на плоскость (х,у) числовых отрезков уравнений y2 + x2 =z2 Второй сектор квадранта является аналогом первого- зеркальным отражением первого при y>x со всеми вытекающими из этого результатами. В процессе проведения анализа по доказательству теоремы Ферма в общем виде получены 4 компактных метода доказательства теоремы при целых x, y, когда требуется показать , что при n>2 число z является нецелым. Первый метод доказательства следует из рассмотрения остроугольного треугольника, для которого Z02= x2 +y2 –2xycosc. Требуется доказать, что Z0 является нецелым числом. В нем известны x и y – целые числа, а cosc определен с учетом ограничений a=b=1. Он изменяется в пределах 0< cosc < 0,5 (см. ф-лу (7) и табл. на стр.3) и является функцией нецелого, иррационального числа х. Значит и соsc является также нецелым числом со множеством значащих цифр после запятой. Благодаря этому нецелым становится выражение 2xycosc, что в свою очередь делает нецелым Z02 и извлеченный из него квадратный корень Z0. В основу второго метода также заложено рассмотрение остроугольного треугольника. Его Z02= x2 +y2 –2xycosc всегда меньше соответствующего Zп2= x2 +y2 прямоугольного треугольника и числовой отрезок Z02 находится внутри числового отрезка Zп2=x2 +y2. Учитывая, что при принятых ограничениях y=x-1, т.е. отличается на единицу, то корень, извлеченный из Z02 будет иметь нецелое значение, т.к. между числами x-1 и x нет других целых чисел. Третий метод основан на другом принципе. Его сущность заключается в следующем. Рекомендуем скачать другие рефераты по теме: сообщения бесплатно, скачать шпаргалки по праву. Категории:Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата Поделитесь этой записью или добавьте в закладки |