Комбинаторика
| Категория реферата: Рефераты по математике
| Теги реферата: налоги и налогообложение, сочинение
| Добавил(а) на сайт: Некрасов.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево?
Решение: В таких числах последняя цифра будет такая же, как и первая, а предпоследняя - как и вторая. Третья цифра будет любой. Это можно представить в виде XYZYX, где Y и Z -любые цифры, а X - не ноль. Значит по правилу произведения количество цифр одинаково читающихся как слева направо, так и справа налево равно 9*10*10=900 вариантов.
Пересекающиеся множества
Но бывает, что множества X и Y пересекаются, тогда пользуются формулой[pic], где X и Y - множества, а [pic] - область пересечения.
Примеры задач
20 человек знают английский и 10 - немецкий, из них 5 знают и английский, и немецкий. Сколько Человек всего?
Ответ: 10+20-5=25 человек.
Также часто для наглядного решения задачи применяются круги Эйлера.
Например:
Из 100 туристов, отправляющихся в заграничное путешествие, немецким языком владеют 30 человек, английским - 28, французским - 42. Английским и немецким одновременно владеют 8 человек, английским и французским - 10, немецким и французским - 5, всеми тремя языками - 3. Сколько туристов не владеют ни одним языком?
Решение: Выразим условие этой задачи графически. Обозначим кругом тех, кто знает английский, другим кругом - тех, кто знает французский, и третьим кругом - тех, кто знают немецкий.
Всеми тремя языками владеют три туриста, значит, в общей части кругов вписываем число 3. Английским и французским языком владеют 10 человек, а
3 из них владеют еще и немецким. Следовательно, только английским и французским владеют 10-3=7 человек.
Аналогично получаем, что только английским и немецким владеют 8-3=5 человек, а немецким и французским 5-3=2 туриста. Вносим эти данные в соответствующие части.
Определим теперь, сколько человек владеют только одним из перечисленных языков. Немецкий знают 30 человек, но 5+3+2=10 из них владеют и другими языками, следовательно, только немецкий знают 20 человек. Аналогично получаем, что одним английским владеют 13 человек, а одним французским - 30 человек.
По условию задачи всего 100 туристов. 20+13+30+5+7+2+3=80 туристов знают хотя бы один язык, следовательно, 20 человек не владеют ни одним из данных языков.
Размещения без повторений.
Сколько можно составить телефонных номеров из 6 цифр каждый, так чтобы все цифры были различны?
Это пример задачи на размещение без повторений. Размещаются здесь 10 цифр по 6. А варианты, при которых одинаковые цифры стоят в разном порядке считаются разными.
Если X-множество, состоящие из n элементов, m?n, то размещением без повторений из n элементов множества X по m называется упорядоченное множество X, содержащее m элементов называется упорядоченное множество X, содержащее m элементов.
Количество всех размещений из n элементов по m обозначают
[pic] n! - n-факториал (factorial анг. сомножитель) произведение чисел натурального ряда от 1 до какого либо числа n n!=1*2*3*...*n 0!=1
Значит, ответ на вышепоставленную задачу будет
[pic]
Задача
Сколькими способами 4 юноши могут пригласить четырех из шести девушек на танец?
Решение: два юноши не могут одновременно пригласить одну и ту же девушку.
И варианты, при которых одни и те же девушки танцуют с разными юношами считаются, разными, поэтому:
[pic]
Возможно 360 вариантов.
Перестановки без повторений
В случае n=m (см. размещения без повторений) из n элементов по m называется перестановкой множества x.
Количество всех перестановок из n элементов обозначают Pn.
Pn=n!
Действительно при n=m:
[pic]
Примеры задач
Рекомендуем скачать другие рефераты по теме: договор реферат, развитие ребенка реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата