Комбинаторные формулы
| Категория реферата: Рефераты по математике
| Теги реферата: решебник 6, рефераты по предметам
| Добавил(а) на сайт: Мартиниан.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
6. Риэлтерская фирма предлагает на продажу 5 больших квартир и 4 малогабаритных квартиры. Банк намеревается купить 4квартиры, причём среди них не должно быть более двух малогабаритных. Сколько вариантов выбора имеет банк?
Банк может купить 4 большие квартиры. У него есть возможность выбрать 4 из 5-ти предлагаемых квартир, и число вариантов здесь равно . Если банк решит купить три большие квартиры и одну малогабаритную, то число вариантов выбора у него будет равно . Если будет принято решение купить две малогабаритных квартиры и две больших квартиры, то число вариантов будет равным . Таким образом, у банка есть 105 вариантов выбора.
Задачи с решениями.
Задача I.
Сколькими различными способами можно расставить на полке собрание сочинений, состоящее из 10-ти томов, при условии, что первый и пятый тома не должны стоять рядом.
Задача II.
Автокомбинат имеет 7 автомобилей малой грузоподъёмности и 10 большегрузных автомобилей. Нужно выбрать 3 автомобиля малой грузоподъёмности для обслуживания трёх торговых организаций и 5 большегрузных автомобилей для работы на стройке. Сколькими способами автокомбинат может осуществить свой выбор?
Задача III.
Имеется пять кусков материи разных цветов. Сколько из этих кусков можно сшить различных флагов, если флаги состоят из трёх горизонтальных полос, причём две соседние полосы должны быть разного цвета?
Задача IV.
Сколько существует различных вариантов рассадки n человек за круглым столом, причём один вариант отличается от другого тем, что хотя бы у одного человека при разных вариантах разные соседи слева.
Задача V.
У Деда Мороза в мешке 7 одинаковых подарков, которые можно произвольным образом распределить среди 5-ти детей. Сколькими способами можно это сделать?
Задача VI.
Сколько различных раскладов можно получить, раздавая колоду из 52-х карт четырём игрокам?
Задача VII.
Сколько различных раскладов можно получить, раздавая колоду из 52-х карт четырём игрокам, при условии, что каждый игрок получает одного туза?
Задача VIII. У Деда Мороза в мешке 7 различных подарков, которые можно произвольным образом распределить среди 5-ти детей. Сколькими способами можно это сделать?
Ответы.
Задача I. 8×9! Задача II. ×. Задача III. +2×. Задача IV. (п–1)! Задача V. . Задача VI. . Задача VII. Задача VIII. 57.
Решения.
Задача I.
Всего существует 10! различных перестановок 10-ти книг. Чтобы подсчитать, сколько можно найти перестановок, в которых первый и пятый тома стоят рядом, предположим, что к первому тому приклеен справа пятый том, и они как бы образуют отдельную книгу. Таким образом, получилось 9 книг, которые могут быть расставлены 9! способами. Теперь нужно учесть, что первый и пятый тома могут быть склеены в другом порядке, и можно получить ещё 9! различных перестановок 10-ти книг, в которых первый и пятый тома стоят рядом. Отсюда следует, что ответ задачи составляет число, равное 10!–2×9!=8×9!
Задача II.
Один выбор тройки автомобилей малой грузоподъёмности от другого может отличаться не только составом выбранных машин, но и их распределением по торговым организациям. Возможно, что эти торговые организации расположены на различных расстояниях от автокомбината, что у них разные условия оплаты труда и т. п. Таким образом, здесь речь идёт о размещениях из семи по три, число которых равно .
Напротив, выбор тяжёлых грузовиков определяется только их составом, так как все они будут работать, как можно заключить из формулировки задачи, в одинаковых условиях. Таким образом, здесь речь идёт о сочетаниях из десяти по пять, число которых равно .
Рекомендуем скачать другие рефераты по теме: тесты онлайн, реферат машины.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата