Комбинаторные формулы
| Категория реферата: Рефераты по математике
| Теги реферата: решебник 6, рефераты по предметам
| Добавил(а) на сайт: Мартиниан.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Теперь заметим, что каждый выбор автомобилей малой грузоподъёмности может быть осуществлён при различных вариантах выбора тяжёлых грузовиков. Отсюда следует, что выбрать требуемую восьмёрку машин автокомбинат может числом способов, равным ×.
Задача III.
Если флаги составлять из трёх полос трёх разных цветов, то один флаг от другого может отличаться не только выбором цветов полос, но и порядком их расположения. Это значит, что из пяти кусков можно изготовить различных флагов, состоящих из трёх полос трёх различных цветов.
По условию задачи каждый флаг можно изготовить из полос двух цветов, например, следующих сверху вниз в таком порядке: “красная, белая, красная”, или в таком порядке: “белая, красная, белая”. Выбор двух цветов можно осуществить числом способов, равным и при каждом варианте выбора получить два различных флага.
Из сказанного следует, что всего можно изготовить +2× различных флагов.
Задача IV.
Занумеруем всех людей числами от 1 до п. Посадим за стол человека с номером 1 на любое место. Будем называть это место первым. Для того, чтобы занять место слева от него (назовём это место вторым) есть п–1 претендент. Таким образом, мы получаем п–1 вариант посадки двух человек. Выбрав кого-либо из претендентов на второе место, и обозначив место слева от второго третьим, будем на третье место иметь п–2 претендента. Отсюда следует, что первые три места можно занять числом способов, равным (п–1)(п–2). Действуя таким образом дальше, мы очевидно переберём все способы посадки п человек за круглым столом, и эт их способов будет (п–1)×(п–2) ×¼×3×2=(п–1)!
Задача V.
К сожалению, условие задачи не накладывает никаких ограничений на действия Деда Мороза, кроме одного: все подарки должны быть розданы. Таким образом, все подарки могут достаться, например, одному ребёнку.
Обозначим каждого ребёнка символом Рi, где i= 1,2,3,4,5, а каждый подарок буквой П. Рассмотрим последовательность
Р1, П, П, Р2, Р3, П, П, П, Р4, П, Р5, П
Будем эту последовательность интерпретировать так: первый ребёнок получил 2 подарка, второй ребёнок не получил подарков, третий ребёнок получил 3 подарка, четвёртый и пятый получили по одному подарку. Теперь заметим, что каждый способ распределения подарков может быть представлен подобной последовательностью. Эта последовательность должна начинаться всегда с Р1, дальше на каком-то месте правее должен находиться символ Р2, дальше вправо– символ Р3 и т. д. На оставшиеся пустые места должны быть поставлены символыП. Число подарков, полученных ребёнком Рi (i=1, 2, 3, 4), равно числу символов П, стоящих между символами Рi и Рi+1. Пятый ребёнок получает столько подарков, сколько символов П находится после символа Р5. Всего в этой последовательности должно быть 7+5=12 членов, но первое место всегда занято символом Р1. Каждая такая последовательность отвечает единственному способу распределения подарков. Таких последовательностей можно найти столько, сколькими способами можно выбрать 7 мест из оставшихся 11-ти для символов П или, что то же самое, 4 места для символов Рi. Из этого следует, что существует вариантов распределения подарков.
В задачах VI и VII методы решения легко находятся, если известны ответы.
Задача VIII. Первый подарок можно отдать любому из пяти детей. Очевидно, второй подарок тоже может получить любой из пяти детей. Следовательно, два подарка можно распределить 25-ю способами. При этом третий подарок имеет 5 возможных владельцев, таким образом, имеется 53=125 вариантов распределения 3-х подарков, и т. д.
Задачи для самостоятельного решения.
1) Автокомбинат получил заявку от строительной фирмы на 5 тяжёлых грузовиков для работы на стройке. Тяжёлый грузовик можно заменить двумя лёгкими грузовиками. На автокомбинате в настоящий момент имеется 5 свободных тяжёлых грузовиков и 5 свободных лёгких грузовиков. Сколько вариантов составления колонны грузовиков для работы на стройке имеет автокомбинат? (Учесть, что каждая машина закреплена за своим шофёром).
Ответ: 101.
2) Сколькими способами можно разложить 7 одинаковых шаров по 4-м ящикам, если в каждый ящик должен попасть хотя бы один шар?
Ответ: 20.
3) Сколькими способами можно разложить 5 разноцветных шаров по 3-м ящикам?
Ответ: 243.
4) Директор фирмы составил список из 5-ти человек, которых он может назначить на вакантную должность своего заместителя, и список из 4-х человек, которых он может назначить на вакантную должность главного бухгалтера. В оба списка вошёл сотрудник Иванов. Других пересечений этих списков не оказалось. Сколько вариантов заполнения двух вакантных должностей имеет директор?
Ответ: 19.
5) Директор фирмы составил список из 5-ти возможных кандидатов на вакантные должности своих 1-го, 2-го и 3-го заместителей, а также список из 4-х возможных кандидатов на 2 вакантные должности своих помощников. Сколько вариантов заполнения пяти вакантных должностей имеет директор?
Ответ: 360.
Рекомендуем скачать другие рефераты по теме: тесты онлайн, реферат машины.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата