Настоящая теория чисел
| Категория реферата: Рефераты по математике
| Теги реферата: экзамен, задачи курсовой работы
| Добавил(а) на сайт: Mariam.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
10 последовательно возрастающих эманаций натурального корня n составляют горизонтальный ряд таблицы. Исключением является первый эманационный ряд, в котором количество числа n равно n.
Например, 1-ый эманационный ряд числа 2 составят два числа: 11 и 20,
а 2-ой ряд - 29, 38, 47, 56, 65, 74, 83, 92, 101, 110;
и т.д.
10 последовательно возрастающих таких рядов составляют цикл. Исключением является первый цикл, в котором количество эманационных рядов равно n + 1.
Аналогичным образом, на основе циклов, можно сформировать периоды, эоны и еще более значительные цикличные последовательности эманаций. Таким образом, становится очевидным, что весь натуральный числовой ряд имеет собственные законы развития, а каждый натуральный корень продолжается в своих эманациях.
2.3. Свойства эманационных рядов и циклов.
1) Эманационные ряды и циклы образуются путем последовательного прибавления числа 9 к натуральному корню n;
2) k-ый эманационный ряд имеет обобщающее число z, образующееся сложением двух чисел p и m, где p - эманация числа n, взятая без последней цифры m; k-ый эманационный цикл имеет обобщающее число z, образующееся сложением двух чисел p и m, где p - эманация числа n, взятая без последней цифры m;
3) Столбцы эманаций натурального корня n, где n=[0,1,2,..,.8], имеют ряд следующих свойств:
- эманации при рассмотрении от первого к последнему столбцу имеют в окончании своего числа цифру, изменяющуюся последовательно на единицу от 9 до 0, причем в первом столбце эманации оканчиваются на цифру 9, а в последнем на 0;
- разница между ближайшими числами столбца равна 90;
- первая цифра в числе эманации при рассмотрении от одной к другой в столбце увеличиваются на 1, а следующая за ней уменьшается на 1.
Более удобным для применения, на наш взгляд, является следующий принцип построения таблиц эманаций натурального корня n. В вертикальных рядах таблицы объединены такие эманации натурального корня n, номера эманаций которых (см. далее) равны по натуральному корню.
Например. Эманации натурального корня 7 - числа 106 и 268 имеют номера эманаций 11 и 29 соответственно, натуральный корень 106 и 268 равен 2.
Правило 1. При сложении двух или нескольких чисел, натуральный корень суммы которых < 9, сумма номеров эманаций складываемых чисел будет равна номеру эманации полученной суммы. Если же натуральный корень суммы > или = 9, то номер эманации суммы будет на единицу больше суммы номеров эманаций складываемых чисел.
Это легко объяснимо, т.к. любое число мы можем представить в виде abcd...n = Nэ * (9 + n), где n - натуральный корень этого числа. Таким образом, при сложении чисел мы складываем отдельно количество 9-к и натуральные корни, и, если натуральные корни в сумме дадут число больше 9, мы вычленяем 9-ку и прибавляем ее к уже имеющимся.
Например.
Сложим числа 199 и 49:
199 + 49 = 248.
Nэ числа 199 равен 22, Nэ числа 49 равен 5, Nэ полученной суммы 248 равен 27, т.е. сумме 22 и 5, т.к. сумма натуральных корней меньше 9
1|199 + 4|49 = 5|248 .
Сложим числа 145 и 233:
145 + 233 = 378.
Nэ числа 145 равен 16, Nэ числа 233 равен 25, Nэ полученной суммы 378 равен 42, т.е. 16 + 25 +1, т.к. сумма натуральных корней равна 9
Теорема 1.
Рекомендуем скачать другие рефераты по теме: реферат народы, шпаргалки по государству и праву.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата