О некоторых применениях алгебры матриц
| Категория реферата: Рефераты по математике
| Теги реферата: шпаргалки по физике, бесплатные дипломы скачать
| Добавил(а) на сайт: Абакумов.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
[pic] (3)
Пусть [pic]- не все равные между собой положительные числа. Тогда
существуют положительные числа [pic] и [pic], не все равные между собой, такие, что [pic]. К этим числам применим тождество (1). Так как не все
числа [pic] между собой равны, то последний сомножитель правой части
тождества (1) есть число положительное и, следовательно,
[pic],
[pic]. (4)
Так как [pic], то неравенство (4) дает неравенство (3). (Неравенство (3)
можно переписать в виде [pic]; получим известный факт о том, что среднее
арифметическое трех положительных, не равных между собой чисел больше их
среднего геометрического).
Пусть [pic] и [pic]- натуральные числа, удовлетворяющие уравнению
(2). Представляются две возможности: либо числа [pic] все равны между
собой, либо не все эти числа равны друг другу.
В первом случае все они должны быть равны 1, так как она положительные и [pic], и мы имели бы:
[pic]- противоречие.
Значит, не все три числа [pic] равны между собой; поэтому в силу неравенства (3) имеем
[pic],
откуда
[pic].
Таким образом, доказано что уравнение
[pic] не имеет решений в натуральных числах [pic].
Предложение 2. Уравнение
[pic] разрешимо в натуральных числах [pic].
Доказательство: удовлетворяют нашему уравнению. Если не все три числа
[pic] между собой равны, то как мы видели в ходе доказательства Предложения
(1), выполняется неравенство
[pic]
- противоречие. Таким образом, должно быть [pic], и из нашего уравнения
следует, что каждое из этих чисел равно 1, так что [pic].
Поэтому получаем
[pic].
Итак, мы доказали, что заданное уравнение имеет бесконечно много решений в натуральных числах [pic].
Предложение 3. Произведение двух чисел, каждое из которых является суммой двух квадратов, представимо в виде суммы двух квадратов.
Доказательство: Рассмотрим следующее произведение двух циклических матриц (второго порядка)
[pic] где [pic]- мнимая единица. Переходя к определителям, получим равенство
[pic]. (5)
Предложение 4. Если число представляемое в виде суммы двух квадратов, делится на простое число, являющееся суммой двух квадратов, то частное также является суммой двух квадратов.
Доказательство: Пусть число [pic] делится на простое число [pic] вида
[pic]:
[pic].
Требуется доказать, что частное [pic] имеет вид [pic].
Предположим, что задача уже решена, т.е.
[pic], (6)
и с помощью анализа попробуем найти искомые числа [pic] и [pic].
Гипотетическое равенство (6) подсказывает целесообразность рассмотрения
матричных равенств.
Рекомендуем скачать другие рефераты по теме: конспект урока 9 класс, сочинение 6 класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата