Поверхности 2-го порядка
| Категория реферата: Рефераты по математике
| Теги реферата: список рефератов, решебник по математике
| Добавил(а) на сайт: Каримов.
1 2 | Следующая страница реферата
Министерство высшего образования Российской Федерации
ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
РЕФЕРАТ
На тему:
“ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА”
Факультет: ФТиКМ
Группа: РТС-99
Студент: Коцурба А.В.
Преподаватель: Лебедева Г.А.
Иркутск
1999
Поверхности второго порядка
Поверхности второго порядка – это поверхности, которые в прямоугольной
системе координат определяются алгебраическими уравнениями второй степени.
1. Эллипсоид.
Эллипсоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением: [pic]
(1)
Уравнение (1) называется каноническим уравнением эллипсоида.
Установим геометрический вид эллипсоида. Для этого рассмотрим сечения данного эллипсоида плоскостями, параллельными плоскости Oxy. Каждая из таких плоскостей определяется уравнением вида z=h, где h – любое число, а линия, которая получается в сечении, определяется двумя уравнениями
[pic] (2)
Исследуем уравнения (2) при различных значениях h.
1) Если [pic]> c (c>0), то [pic] и уравнения (2) определяют мнимый эллипс, т. е. точек пересечения плоскости z=h с данным эллипсоидом не существует.
2) Если [pic], то [pic] и линия (2) вырождается в точки (0; 0; + c) и (0;
0; - c) (плоскости [pic] касаются эллипсоида).
3) Если [pic], то уравнения (2) можно представить в виде
[pic]
откуда следует, что плоскость z=h пересекает эллипсоид по эллипсу с
полуосями [pic] и [pic]. При уменьшении [pic] значения [pic]и
[pic]увеличиваются и достигают своих наибольших значений при [pic], т. е. в
сечении эллипсоида координатной плоскостью Oxy получается самый большой
эллипс с полуосями [pic] и [pic].
Аналогичная картина получается и при пересечении данной поверхности
плоскостями, параллельными координатным плоскостям Oxz и Oyz.
Таким образом, рассмотренные сечения позволяют изобразить эллипсоид как
замкнутую овальную поверхность (рис. 156). Величины a, b, c называются
полуосями эллипсоида. В случае a=b=c эллипсоид является сферой.
2. Однополосный гиперболоид.
Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением
[pic] (3)
Уравнение (3) называется каноническим уравнением однополосного гиперболоида.
Установим вид поверхности (3). Для этого рассмотрим сечение ее координатными плоскостями Oxy (y=0) и Oyx (x=0). Получаем соответственно уравнения
[pic] и [pic]
из которых следует, что в сечениях получаются гиперболы.
Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями
[pic] или [pic] (4)
Рекомендуем скачать другие рефераты по теме: бесплатные рефераты, пожары реферат.
Категории:
1 2 | Следующая страница реферата