Практическое применение производной
| Категория реферата: Рефераты по математике
| Теги реферата: банк курсовых, ответы на билеты
| Добавил(а) на сайт: Толмачёв.
1 2 3 | Следующая страница реферата
Южно-Сахалинский Государственный Университет
Кафедра математики
Курсовая работа
Тема: Практическое применение производной
Автор: Меркулов М. Ю.
Курс: 3
Преподаватель: Лихачева О. Н.
Оценка:
Южно-Сахалинск
2002г
Введение
В данной работе я рассмотрю применения производной в различных науках и отраслях. Работа разбита на главы, в каждой из которых рассматривается одна из сторон дифференциального исчисления (геометрический, физический смысл и т. д.)
1. Понятие производной
1-1. Исторические сведения
Дифференциальное исчисление было создано Ньютоном и Лейбницем в конце 17
столетия на основе двух задач:
1) о разыскании касательной к произвольной линии
2) о разыскании скорости при произвольном законе движения
Еще раньше понятие производной встречалось в работах итальянского
математика Тартальи (около 1500 - 1557 гг.) - здесь появилась касательная в
ходе изучения вопроса об угле наклона орудия, при котором обеспечивается
наибольшая дальность полета снаряда.
В 17 веке на основе учения Г.Галилея о движении активно развивалась
кинематическая концепция производной. Различные изложения стали встречаться
в работах у Декарта, французского математика Роберваля, английского ученого
Л. Грегори. Большой вклад в изучение дифференциального исчисления внесли
Лопиталь, Бернулли, Лагранж, Эйлер, Гаусс.
1-2. Понятие производной
Пусть y = f(x) есть непрерывная функция аргумента x, определенная в
промежутке (a; b), и пусть х0 - произвольная точка этого промежутка
Дадим аргументу x приращение ?x, тогда функция y = f(x) получит приращение
?y = f(x + ?x) - f(x). Предел, к которому стремится отношение ?y / ?x при
?x > 0, называется производной от функции f(x). y'(x)=[pic]
1-3. Правила дифференцирования и таблица производных
|C' = 0 |(xn) = nxn-1 |(sin x)' = cos x |
|x' = 1 |(1 / x)' = -1 / x2|(cos x)' = -sin x |
|(Cu)'=Cu' |(?x)' = 1 / 2?x |(tg x)' = 1 / cos2 x |
|(uv)' = u'v + uv' |(ax)' = ax ln x |(ctg x)' = 1 / sin2 x |
|(u / v)'=(u'v - uv') |(ex)' = ex |(arcsin x)' = 1 / ? (1-|
|/ v2 | |x2) |
| |(logax)' = (logae)|(arccos x)' = -1 / ? |
| |/ x |(1- x2) |
| |(ln x)' = 1 / x |(arctg x)' = 1 / ? (1+ |
| | |x2) |
| | |(arcctg x)' = -1 / ? |
| | |(1+ x2) |
2. Геометрический смысл производной
2-1. Касательная к кривой
Пусть имеем кривую и на ней фиксированную точку M и точку N. Касательной к точке M называется прямая, положение которой стремится занять хорда MN, если точку N неограниченно приближать по кривой к M.
Рассмотрим функцию f(x) и соответствующую этой функции кривую y = f(x). При
некотором значении x функция имеет значение y = f(x). Этим значениям на
кривой соответствует точка M(x0, y0). Введем новый аргумент x0 + ?x, его
значению соответствует значение функции y0 + ?y = f(x0 + ?x).
Соответствующая точка - N(x0 + ?x, y0 + ?y). Проведем секущую MN и
обозначим ? угол, образованный секущей с положительным направлением оси Ox.
Из рисунка видно, что ?y / ?x = tg ?. Если теперь ?x будет приближаться к
0, то точка N будет перемещаться вдоль кривой , секущая MN - поворачиваться
вокруг точки M, а угол ? - меняться. Если при ?x > 0 угол ? стремится к
некоторому ?, то прямая, проходящая через M и составляющая с положительным
направлением оси абсцисс угол ?, будет искомой касательной. При этом, ее
угловой коэффициент:
[pic]
То есть, значение производной f '(x) при данном значении аргумента x равно
тангенсу угла, образованного с положительным направлением оси Ox
касательной к графику функции f(x) в точке M(x, f(x)).
Касательная к пространственной линии имеет определение, аналогичное определению касательной к плоской кривой. В этом случае, если функция задана уравнением z = f(x, y), угловые коэффициенты при осях OX и OY будут равны частным производным f по x и y.
2-2. Касательная плоскость к поверхности
Касательной плоскостью к поверхности в точке M называется плоскость, содержащая касательные ко всем пространственным кривым поверхности, проходящим через M - точку касания.
Возьмем поверхность, заданную уравнением F(x, y, z) = 0 и какую-либо
обыкновенную точку M(x0, y0, z0) на ней. Рассмотрим на поверхности
некоторую кривую L, проходящую через M. Пусть кривая задана уравнениями x = ?(t); y = ?(t); z = ?(t).
Подставим в уравнение поверхности эти выражения. Уравнение превратится в
тождество, т. к. кривая целиком лежит на поверхности. Используя свойство
инвариантности формы дифференциала, продифференцируем полученное уравнение
по t:
Рекомендуем скачать другие рефераты по теме: ответы на сканворды в одноклассниках, реферат на тему технология.
Категории:
1 2 3 | Следующая страница реферата