Образовательный портал Claw.ru
Всё для учебы, работы и отдыха
» Шпаргалки, рефераты, курсовые
» Сочинения и изложения
» Конспекты и лекции
» Энциклопедии

m +

q(q + 1)

2

, m +

q(q – 1)

2

)

,

(3)

где q — любое целое число, а m ≥ 0.

Смысл чисел m и q станет более наглядным, если представлять себе векторы вида (3) при m=0 как точки с целыми координатами параболы k(x, y) = 0, лежащей в плоскости (x, y). (Вы понимаете, почему это парабола?) Тогда полученные нами целочисленные решения неравенства k(x, y) ≥ 0. показывают, что все точки с целыми координатами, лежащие на параболе k(x, y) = 0 и внутри неё, получаются сдвигами целых точек этой параболы на векторы (m, m) (рис. 3). Удобно считать, что число m (m=0, 1, 2, ...) — номер параболы, на которой лежит точка (x, y), a q = x–y = 0, ±1, ±2, ... — номер точки на этой параболе.

Claw.ru | Рефераты по математике | Разбиение чисел

Рис. 3.

Поскольку условия задачи симметричны относительно перестановки координат векторов, достаточно доказать все утверждения для таких векторов (x, y), что x ≥ y, т.е. для векторов вида (3) с q ≥ 0.

Докажем достаточность условия в пункте а) задачи. По формуле суммы арифметической прогрессии

 1 + 2 + ... + (q–1) + m + q = m +

q(q + 1)

2

 ;

 0 + 1 + ... + (q–2) + m + (q–1) = m +

q(q – 1)

2

 .

Поэтому формулы

(x, y) = (1, 0) + (2, 1) + ... + (q–1, q–2) + (m+q, m+q–1) при q>0


Рекомендуем скачать другие рефераты по теме: проблема дипломной работы, шпаргалки по русскому.


Категории:




Предыдущая страница реферата | 1  2  3  4  5  6  7  8  9  10  11 |


Поделитесь этой записью или добавьте в закладки

   



Рефераты от А до Я


Полезные заметки

  •