Шпаргалка по высшей математике
| Категория реферата: Рефераты по математике
| Теги реферата: контрольная по русскому языку, реферат образование
| Добавил(а) на сайт: Kudrov.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
4)Параметрическое ур-е прямой: прямая задаётся при помощи точки, лежащей на прямой, и направляющего вектора. М0(x0;y0;z0), (q (l;m;n). (x=x0+lt
(y=y0+mt
( z=z0+nt, t- параметр.
5)Угол между 2-мя прямыми в пространстве – это, практически, угол между их направляющими векторами:
Cos(=L1L2+m1m2+n1n2/( L12 +m12+n12 (( L22+m22+n22 .
15 (46). Взаимное расположение прямой и плоскости.
1)Угол между прямой и плоскостью вычисляется по формуле:
Cos(=(Al+Bm+Cn(((A2+B2+C2 ((l2+m2+n2. Где l, m, n- координаты
направляющего вектора прямой; A, B, C- координаты (n. В этом случае прямая
может быть задана каноническим или параметрическим ур-ем прямой, а
плоскость – общим. 2)Прямая и плоскость в пространстве параллельны: тогда и
только тогда, когда скалярное произведение направляющего вектора прямой и
нормального вектора плоскости равно 0. (n(A,B,C)(q (l;m;n)( Ax+By+Cz+D=0
(общее ур-е плоскости); x-x0/l=y-y0/m=z-z0/n. Т.к. (n ((q=0 (Al+Bm+Cn=0.
3)прямая и плоскость в пространстве перпендикулярны: тогда и только тогда, когда направляющий вектор прямой и нормальный вектор плоскости коллинеарные
(параллельны). Два вектора коллинеарны тогда и только тогда, когда их
векторное произведение равно 0 или координаты пропорциональны. Т.к. (n
((q=0, А/l=B/m=C/n. 4)условия, при которых прямая принадлежит плоскости:
а)скалярное произведение(n ((q=0, т.е. Al+Bm+Cn=0; б) при подстановке
координат точки, лежащей на прямой, в общее ур-е плоскости получается
верное равенство( Ax0+By0+Cz0+D=0
(x=x0+lt,
(y=y0+mt,
(z=z0+nt (параметрич. ур-е прямой).
5)точка пересечения прямой и плоскости: для того, чтобы найти координаты точки пересечения прямой и плоскости в пространстве, необходимо совместно решить систему, составленную из ур-ий: x-x0/l=y-y0/m=z-z0/n (канонич. ур-е прямой), Ax+By+Cz+D=0 (общее ур-е плоскости). Для того,чтобы решить такую систему необходимо перейти от канонич. ур-я к параметрическому:
(x=x0+lt,
(y=y0+mt,
(z=z0+nt (параметрич. ур-е прямой)
( Ax+By+Cz+D=0.
16 (47). Кривые второго порядка. Окружность.
Кривой 2-го порядка называется линия, определяемая уравнением 2-ой степени
относительно текущих декартовых координат. В общем виде ур-е принимает вид:
Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где A, 2B, C, 2D, 2E, F- действительные числа.
Кроме того, по крайней мере, одно из этих чисел (0. Окружность-множество
точек, равно удалённых от данной точки (центра). Если обозначить через R
радиус окр., а через С(x0,y0) –центр окружности, то исходя из этого
определения :
Возьмём на окр. произвольную точку М (x,y). По определению, расстояние СМ=
R. Выражу СМ ч/з координаты заданных точек: СМ =( (x-x0)2+(y-y0)2 = R
(R2=(x-x0)2+(y-y0)2 -ур-е окр. С центром в точке С(x0,y0). Это ур-е
называется нормальным ур-ем окружности. Ax2+2Bxy+Cy2+2Dx+2Ey+F=0-ур-е
второй степени с 2-мя переменными в общем виде. Ax2++Cy2 =(-кривая второго
порядка, где А,В,С не равны 0 одновременно, т.е. А2+В2+С2(0. x2+y2-2x0x-
2y0y+x02+y02-R2=0; B=0, A/1=C/1(A=C(0 (т.к. A2+B2+C2(0, B=0). Получаем ур-
е: Ax2+Ay2+Dx+Ey+F=0- общее ур-е оркужности. Поделим обе части этого ур-я
на А(0 и, дополнив члены, содержащие x,y, до полного квадрата, получаем:
(x+(D/2A))2+(y+(E/2A))2=(D2+E2-4AF)/4A2. Cравнивая это ур-е с нормальным ур-
ем окр., можно сделать вывод, что ур-е: Ax2+Bxy+Cy2+Dx+Ey+F=0-ур-е
действительной окружности, если:1)А=С; 2)В=0; 3) D2+E2-4AF(0. При
выполнении этих условий центр окр. расположен в точке О(-D/2A;-E/2A), а её
радиус R=(D2+E2-4AF/2A.
17 (48). Кривые второго порядка. Эллипс.
Кривой 2-го порядка называется линия, определяемая уравнением 2-ой степени
относительно текущих декартовых координат. В общем виде ур-е принимает вид:
Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где A, 2B, C, 2D, 2E, F- действительные числа.
Кроме того, по крайней мере одно из этих чисел (0. Эллипс (кривая
эллиптического типа) - кривая 2-го порядка, где коэффициенты А и С имеют
одинаковые знаки.
18 (49). Кривые второго порядка. Гипербола.
Кривой 2-го порядка называется линия, определяемая уравнением 2-ой степени
относительно текущих декартовых координат. В общем виде ур-е принимает вид:
Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где A, 2B, C, 2D, 2E, F- действительные числа.
Кроме того, по крайней мере одно из этих чисел (0. Кривая 2-го порядка
называется гиперболой (или кривой гиперболического типа), если коэффициенты
А и С имеют противоположные знаки, т.е. АС(0. Кривые 2го порядка
описываются с помощью общего ур-я:
Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где
[pic]
а) Каноническое ур-е параболы: y2=2px или y=ax2
Рекомендуем скачать другие рефераты по теме: доклад по биологии, реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата