
Теория колец
| Категория реферата: Рефераты по математике
| Теги реферата: банки рефератов бесплатно, реферат по обж
| Добавил(а) на сайт: Nutrihin.
1 2 3 | Следующая страница реферата
Пусть на множестве R определены две алгебраические операции, которые мы будем называть сложением и умножением и обозначать соответственно + и *. Говорят, что умножение обладает свойством (правой) дистрибутивности относительно сложения, если
. (1)
Аналогично определяется свойство левой дистрибутивности. Разумеется, если операция умножения коммутативна, эти свойства равнозначны. В общем случае говоря о свойстве дистрибутивности мы будем подразумевать двустороннюю дистрибутивность. Предположим, что операция ’+’ на R имеет нейтральный элемент, обозначаемый 0. Положив в равенстве (1) y = z = 0, получим: x*0 = x*0 + x*0, откуда, при наличии свойства сокращения для операции ’+’ , получаем, что x*0 = 0. Если для элемента y имеется противоположный элемент (-y), то взяв в том же равенстве z = -y, получим: 0 = x*0 = x*y + x*(-y) и, значит, x*(-y) = -x*y.
Определение.
Множество с двумя алгебраическими операциями R(+,*) называется кольцом, если
(R,+) - абелева группа (аддитивная группа кольца R). Умножение в R дистрибутивно относительно сложения.Дополнительные свойства операции умножения отмечаются с помощью соответствующих прилагательных перед словом кольцо. Так ассоциативное кольцо - это кольцо, в котором операция умножения обладает свойством ассоциативности. Аналогичный смысл имеет термин коммутативное кольцо. Наличие нейтрального элемента для операции умножения выражают термином кольцо с единицей ( этот нейтральный элемент называют единицей и обозначают или просто e ); При этом дополнительно предполагается, что кроме свойств 1 и 2 выполнено


Элементы такого кольца R, имеющие обратные относительно операции умножения, называются обратимыми , а их множество обозначается через . Отметим, что для ассоциативного кольца с единицей множество
является группой по умножению, называемой мультипликативной группой кольца R. Поскольку в кольце R с единицей
x*0 = 0
e , элемент 0 из R необратим. В случае ассоциативного кольца не будет обратим и такой элемент y
0, для которого можно найти такое z
0, что y*z = 0. Такой элемент y называется (левым) делителем нуля.
Определение.
Полем называется такое ассоциативное коммутативное кольцо с единицей k, в котором всякий ненулевой элемент обратим: .
Таким образом, по определению в поле отсутствуют делители нуля.
Примеры колец и полей.
Хорошо известными примерами полей являются, конечно, поля R,Q, и C соответственно вещественных, рациональных и комплексных чисел . Отметим, что любое поле содержит по крайней мере 2 элемента - 0 и e. Этот “минимальный” запас элементов и достаточен для образования поля: операции определяются очевидным образом ( отметим только, что e+e=0). Построенное поле из двух элементов обозначается GF(2) (по причинам, которые будут ясны в дальнейшем). Напомним также, что если p - простое число, то все вычеты по модулю p, кроме 0, обратимы относительно операции умножения. Значит, рассматривая группу





















Определение.
Подмножество называется подкольцом, если оно является кольцом относительно тех же операций, которые определены в R.
Это означает, что К является подгруппой аддитивной группы R и замкнуто относительно умножения: . Отметим, что если R обладает свойством ассоциативности , коммутативности или отсутствием делителей нуля, то и К обладает теми же свойствами. В то же время, подкольцо кольца с единицей может не иметь единицы. Например, подкольцо четных чисел 2Z
Z не имеет единицы. Более того, может случиться, что и R и K имеют единицы, но они не равны друг другу. Так будет, например, для подкольца
, состоящего из матриц с нулевой последней строкой и последним столбцом;
=diag(1,1,...,1,0)
=diag(1,1,...,1).
Определение.
Гомоморфизмом колец называется отображение, сохраняющее обе кольцевые операции:
и
. Изоморфизм - это взаимно однозначный гомоморфизм.
Ядро гомоморфизма - это ядро группового гомоморфизма аддитивных групп
, то есть множество всех элементов из R, которые отображаются в
.
Пусть снова - некоторое подкольцо. Поскольку (К,+) - подгруппа коммутативной группы (R,+), можно образовать факторгруппу R/K, элементами которой являются смежные классы r+K. Поскольку К*К
К, для произведения двух смежных классов имеет место включение: (r+K)*(s+K)
r*s+r*K+K*s+K.
Определение.
Подкольцо К называется идеалом кольца R, если : x*K
K и K*y
K.
Мы видим, что если К является идеалом в R, произведение смежных классов (r+K)*(s+K) содержится в смежном классе r*s+K. Значит в факторгруппе R/K определена операция умножения, превращающая ее в кольцо, называемое факторкольцом кольца R по идеалу К.
Примеры.
Подкольцо nZ является идеалом кольца Z, поскольку для любого целого m m(nZ)

















Замечание.
Свойства ассоциативности, коммутативности и наличия единицы очевидно сохраняются при переходе к факторкольцу. Напротив, отсутствие в R делителей нуля еще не гарантирует их отсутствие в факторкольце (см. пример 1).
Теорема об ядре.
Рекомендуем скачать другие рефераты по теме: менеджмент, реферат условия.
Категории:
1 2 3 | Следующая страница реферата