Трионы: три тела в двух измерениях
| Категория реферата: Рефераты по математике
| Теги реферата: дипломная работа образец, решебник по математике 6 класс
| Добавил(а) на сайт: Elpidifor.
1 2 3 4 | Следующая страница реферата
Трионы: три тела в двух измерениях
Р.А. Сергеев
1. Введение, или что такое трионы
Бурное развитие гетероструктур в последние десятилетия привело к тому, что удалось обнаружить или создать большое количество физических объектов и явлений, которые ранее либо не изучались, либо рассматривались чисто теоретически, в виде экзотики, вряд ли осуществимой на практике. Действительно, возможность встраивать в проводник потенциал практически любого профиля, причем с масштабом, характерным для проявления квантоворазмерных явлений, позволила создавать на практике искусственные объекты с заранее заданными свойствами. Так, например, квантовая точка представляет собой, фактически, искусственный атом с системой уровней, которая задаётся размерами, формой квантовой точки и полупроводником, на основе которого она реализована. Заметим, что все эти параметры поддаются контролю со стороны экспериментатора, тем самым, именно он определяет, какой объект будет создан.
Для того чтобы получить квантоворазмерную структуру в полупроводнике, необходимо создать ограничения на движение носителей заряда на масштабе длин, сравнимых с их де-бройлевскими длинами волн. Принципиальными здесь являются структуры, в которых движение носителей полностью ограничено только в одном (квантовые ямы), двух (квантовые нити) или во всех трех (квантовые точки) направлениях. Создание таких структур означает реализацию на практике объектов с размерностью меньшей, чем в обычном полупроводнике ([*1]). Один из многочисленных эффектов, связанных с понижением размерности, это увеличение характерной энергии связи практически любых низкоразмерных систем по сравнению с их трехмерными аналогами. Это связано с тем, что частицы, из которых состоит система, имеют меньше степеней свободы в такой структуре, чем в трехмерном полупроводнике, из-за того, что их движение ограничено в одном или нескольких направлениях. Это уменьшает их характерную энергию локализаций, которая возникает при образовании систёмы. С другой стороны, связывающий потенциал системы, при наличии ограничения, как правило, возрастает, так как, из-за концентрации волновой функции в области квантоворазмерной структуры, усиливается кулоновское взаимодействие, и возрастает роль обменного взаимодействия (сильнее перекрываются волновые функции одинаковых частиц). В результате рост энергии связи практически любых систем, даже при небольшом понижении их размерности, может быть значительным. Например, энергия связи основного состояния двумерного экситона (связанные электрон и дырка) в 4 раза выше, чем у соответствующего ему трехмерного аналога. Интерес вызывает также то, что при понижении размерности происходят не только количественные, но и качественные изменения в квантовомеханических системах.
Например, хорошо известно [1], что трехмерная потенциальная яма, в случае если ее глубина достаточно мала (по сравнению с характерной энергиеи локализации), не имеет ни одного связанного состояния, и только если глубина ямы превышает некоторое критическое значение, такое состояние появляется. В двумерном же потенциале, связанное состояние существует в любом отрицательном потенциале V(r)<=0, если не равен нулю интеграл от этого потенциала по всему пространству
В связи с этими эффектами в область внимания исследователей попали системы, которые до развития квантоворазмерных гетероструктур представляли только теоретический интерес. Одним из таких новых объектов стал связанный трехчастичный электрон-дырочный комплекс - трион. Из набора электронов и дырок можно составить два различных варианта этого комплекса (см. рис.1):Х- (2 электрона и дырка) и Х+ (2 дырки и электрон).
Впервые на возможность существования трионов в полупроводнике было указано еще B 1958 году Лампертом [2]. Однако в обычном полупроводнике характерная энергия связи этих комплексов невелика - десятые доли meV, поэтому экспериментальное обнаружение трионов произошло только в 1992 году [3] в полупроводниковой гетероструктуре с квантовой ямой. То есть их обнаружение стало возможным только вследствие использования эффектов, связанных с понижением размерности.
Действительно, заметим, что если ширина квантовой ямы становится малой по сравнению с характерными размерами триона, то движения частиц, из которых он состоит, параллельно и перпендикулярно яме становятся независимыми, и их можно разделить. При этом ширина ямы перестает влиять на волновую функцию триона в плоскости ямы и его в этом случае можно считать чисто двумерным. Поскольку реальные размеры комплексов довольно велики — до 50 A, то получение структуры с двумерным трионом вполне возможно на практике. Как оказалось, в связи с эффектом пониженной размерности, энергия связи триона в такой структуре может до 10 раз превосходить таковую в обычном полупроводнике. Более того, практически незаметные в обычном полупроводнике, именно трионы нередко определяют нижний край спектра оптического поглощения квантовой ямы.
Но как устроен двумерный трион? Нетрудно заметить, что волновая функция любого триона, с точностью до масштаба, определяется только одним параметром - отношением эффективных масс электрона и дырки. Причем, это отношение масс и, как следствие, все свойства этих комплексов могут различаться в разных полупроводниках в широких пределах: от σ=1 (например, в случае легкой дырки), до очень малых значений σ→0 (если масса дырки многократно превышает массу электрона). А если теперь заметить, что трион X+ с отношением масс σ имеет такую же волновую функцию, как и трион X- с 1/σ, то получается, что с помощью трионов можно экспериментально наблюдать целый класс двумерных трехчастичных систем. А именно, все системы, состоящие из трех частиц, связанных кулоновским взаимодействием, из которых две частицы одинаковы, а третья отличается от них массой и знаком заряда. Отметим, что предельными случаями таких систем являются двумерные ион водорода H- с одной стороны и молекула водорода H2+ с другой. То есть трионы фактически представляют собой экспериментально наблюдаемый промежуточный объект между ионом H- и молекулой H+2 и, изучая эти комплексы при различных отношениях масс электрона и дырки, можно плавно перейти от отрицательно заряженного иона к положительно заряженной молекуле, что само по себе является уникальной возможностью.
В связи с этим, становится актуальной задача: а как же найти энергию такого комплекса в чисто двумерном случае? Причем желательно это сделать сразу при всех отношениях эффективных масс электрона и дырки, чтобы получить результаты, пригодные для любых полупроводников.
2. Другие кулоновские задачи трех тел в квантовой механике
Как уже упоминалось, задача о трионе представляет собой двумерный вариант квантовомеханической задачи трех тел, связанных кулоновским взаимодействием. Как и в трехмерном случае, ее невозможно точно решить в общем случае, пользуясь только аналитическими методами. Даже численное решение этой задачи требует определенных усилий. Однако задача о трионе - далеко не первый в квантовой механике случай задачи трех тел, связанных кулоновским взаимодействием. Действительно, в различное время возникали аналогичные, главным образом трехмерные задачи и, прежде чем перейти к дальнейшему рассмотрению триона, мы вкратце остановимся на них и упомянем некоторые пути их решения.
Оказывается, помимо трионов, в обычных экспериментах встречается не так уж много качественно различных квантовомеханических кулоновских систем, состоящих из трех частиц. Более того, во многих из этих систем, вследствие особенностей их строения, возникают один или несколько малых параметров, что позволяет серьезно упростить их рассмотрение.
Кулоновские системы трех тел возникают, за несколькими исключениями, при изучении атомов и молекул. В этом случае единственное из чего они могут состоять - это легкие отрицательно заряженные электроны и тяжелые положительно заряженные ядра, заряд которых либо равен, либо кратен заряду электрона. Исходя из такого набора, можно сформулировать только две качественно различных задачи.
Во-первых, это задача о системе с двумя ядрами,, связанными одним электроном. Причем заряд ядер в этом случае, вследствие их взаимного кулоновского отталкивания, должен равняться по модулю заряду электрона. Характерный представитель такой системы - это молекула водорода H+2.
Во-вторых, это задача об атоме с двумя электронами. Здесь ядро не обязательно должно иметь единичный заряд и желательно рассмотреть два различных случая:
1. Заряд ядра больше заряда электрона. Крайний, и поэтому наиболее интересный представитель этого класса - атом гелия Не (заряд ядра только в 2 раза превосходит заряд электрона).
2. Заряд ядра равен заряду электрона. Этот случай особенно интересен тем, что электроны взаимодействуют друг с другом с той же силой, что и с ядром, поэтому ближний к ядру электрон полностью экранирует его для дальнего электрона, что серьезно меняет волновую функцию этой системы. Характерный представитель в этом случае - это отрицательный ион водорода H-.
Во всех этих системах (молекула H+2, атом Не и ион H-) есть, по крайней мере, один малый параметр - малая масса электрона по сравнению с массой ядра. Это указывает на то, что их рассмотрение во многом можно упростить. Посмотрим по порядку, как можно найти энергию основного состояния этих систем:
1. Молекула водорода H+2.
В этом случае, из-за малой массы электрона по сравнению с протоном, волновые функции электрона и ядер можно разделить. То есть, можно считать, что электрон занимает наиболее энергетически выгодное положение в потенциале двух неподвижных ядер, а сами ядра адиабатически движутся в некотором эффективном связывающем потенциале. Задача в этом случае распадается на две существенно более простые.
2. Атом гелия Не.
В этой задаче можно сделать сразу два упрощения. Во-первых, вследствие малого отношения масс электрона и ядра, последнее можно считать неподвижным. Во-вторых, так как взаимодействие между электронами минимум в два раза меньше, чем их притяжение к ядру, то энергию основного состояния даже атома гелия можно с хорошей точностью найти, оценивая взаимодействие двух электронов по теории возмущений [4]. Также существенно упрощает задачу неспособность электрона в одиночку полностью заэкранировать потенциал ядра. То есть даже дальний от ядра электрон испытывает кулоновское притяжение ядра, пусть даже с меньшим эффективным зарядом. Это позволяет получить энергию основного состояния гелия помимо теории возмущений простыми вариационными процедурами. В этом случае неизвестная точная волновая функция электронов в атоме гелия заменяется удобной аналитической формой, включающей некоторые произвольные параметры. С помощью этой пробной функции вычисляется энергия гелия, как функция от этих подгоночных параметров. Минимальное относительно всех параметров значение этой энергии и принимается за оценку энергии основного состояния атома гелия. Точность этого метода напрямую зависит от того, насколько близка оказалась выбранная подгоночная функция к точной функции электронов в гелии. Отсутствие полного экранирования электроном ядра как раз и дает возможность, пользуясь простыми методами, "угадать" волновую функию этого атома.
3. Отрицательно заряженный атом водорода H-. От разобранного выше атома гелия его отличает отсутствие второго "малого параметра": так как заряды всех входящих в H- частиц равны, то взаимодействие между электронами имеет практически ту же величину, что и взаимодействие каждого из них с ядром. Из-за этого становится невозможным какое-либо разбиение этой задачи на менее сложные составляющие, что затрудняет её решение. Для нахождения энергии основного состояния иона H- используются главным образом варидционные методы. Первый вариационный расчет этого иона был проделан еще в 1929 году Бете [5] с помощью метода, предложенного Хиллераасом в том же году [6], в связи с возникшей необходимостью рассчитать взаимодействие иона H- с ионом Li+ в соединении гидрида лития LiH. Позже, в сороковые годы, свойства отрицательного иона водорода оказались важны для объяснения непрозрачности атмосферы Солнца и солнцеподобных звезд.
Для полноты к рассмотренным системам еще нужно добавить ион позитрония (связанное состояние двух электронов и позитрона), при расчетах которого, также как и для иона H-, используются вариационные процедуры.
Пожалуй, на этом можно закончить список принципиально различных кулоновских трехчастичных задач, возникающих в экспериментальной практике. Другие кулоновские трехчастичные системы, такие как носители заряда, локализованные на кулоновских центрах или атом с мезонами вместо электронов, как правило, можно рассматривать аналогично разобранным выше задачам об ионе H- и молекуле H+2.
Рекомендуем скачать другие рефераты по теме: характеристика реферата, реферат перспектива.
Категории:
1 2 3 4 | Следующая страница реферата