Тройные и кратные интегралы
| Категория реферата: Рефераты по математике
| Теги реферата: изложение, решебник по русскому
| Добавил(а) на сайт: Igoshin.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
Рис.6
Связь между сферическими и декартовыми координатами легко устанавливается. Из рис.6 имеем
Отсюда
(**)
Разобьем область на частичные области , тремя системами координатных поверхностей: которыми будут
соответственно сферы с центром в начале координат, полуплоскости, проходящие, через ось Оz, и конусы с вершиной в начале координат и с осями, совпадающими с одной из полуосей Оz. Частичными областями служат “шестигранники” (рис. 7). Отбросив бесконечно малые высших порядков, будем рассматривать шестигранник MN как прямоугольный параллелепипед с измерениями, равными: по направлению полярного радиуса, по направлению меридиана, по направлению параллели. Для элемента объема мы получим тогда выражение
Заменив в тройном интеграле по формулам (**) и взяв элемент объема равным полученному выражению, будем иметь
Особенно удобно применение сферических координат в случае, когда область интегрирование - шар с центром в начале координат или шаровое кольцо. Например, в последнем случае, если радиус внутреннего шара , а внешнего , пределы интегрирования следует расставить так:
Если - шар, то нужно положить
Рекомендуем скачать другие рефераты по теме: налоги в россии, бесплатные тесты бесплатно.
Категории:
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата