Зарождение науки о закономерностях случайных явлении
| Категория реферата: Рефераты по математике
| Теги реферата: шпаргалки по психологии, курсовики скачать бесплатно
| Добавил(а) на сайт: Лещенко.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Пример 1. В урне находятся три синих, восемь красных и десять белых шаров одинакового размера и веса, неразличимых наощупь. Шары тщательно перемешаны. Какова вероятность появления синего, красного и белого шаров при одном вынимании шара из урны?
Решение. Так как появление любого шара можно считать равновозможным, то мы имеем всего n=3+8+9=20 элементарных событий. Если через А, В, С обозначить события, состоящие в появлений соответственно синего, красного и белого шаров, а через m1,m2,m3— число благоприятствующих этим событиям случаев, то ясно, что m1=3,m2=8,m3=9. Поэтому
P(A)=3/20=0,15; P(B)=8/20=0,40; P(C)=9/20=0,45.
Пример 2. Одновременно брошены две монеты. Какова вероятность появления m гербов (m = 0, 1,2)?
Решение. Рассмотрим возможные при бросании двух монет исходы. Очевидно, их можно описать схемой
ГГ, ГР, РГ, РР,
где Г означает выпадение герба, а Р — надписи. Таким образом, возможны четыре элементарных события. Поскольку монеты предполагаются однородными и имеющими геометрически правильную форму, то нет никаких оснований предполагать, что одна из сторон какой-либо монеты выпадает чаще других. Поэтому все четыре случая следует считать равновозможными. Но тогда, обозначив через Pm вероятность выпадения m гербов, легко получим:
P0=1/4; P1=2/4=1/2; P2=1/4.
Пример 3. Одновременно бросаются две игральные кости, на гранях которых нанесены очки 1, 2, 3, 4, 5, 6. Какова вероятность того, что сумма очков, выпавших на двух костях, равна восьми?
Решение. Так как любое из возможного числа очков на одной кости может сочетаться с любым числом очков па другой, то общее число различных случаев равно n = 6 * б = 36. Легко убедиться в том, что все эти случаи попарно несовместны, равновозможны и образуют полную группу событий. Для ответа на вопрос следует подсчитать, в каком числе случаев сумма очков равна восьми. Это будет, если число очков на брошенных костях равно
2 + 6, 3 + 5, 4 + 4, 5 + 3, 6 + 2,
причем первое слагаемое означает число очков на первой, а второе - на второй кости. Отсюда видно, что событию А, состоящему в том, что сумма очков, выпавших на двух костях, равна восьми, благоприятствует m= 5 случаев. Поэтому
P(A)=5/36.
Пример 4. В мешке лежат 33 жетона, помеченные буквами русского алфавита. Из него извлекают жетоны и записывают соответствующие буквы, причем вынутые жетоны обратно не возвращают. Какова вероятность того, что при этом получится слово “око”? слово “ар”?
Решение. Ошибочно было бы решать задачу так: вероятность извлечения любой буквы равна 1/33, поэтому вероятность сложить слово “око” равна 1/33^3, а вероятность сложить слово “ар” равна 1/33^2. Это было бы верно, если бы последовательные извлечения жетонов из мешка были независимы друг от друга. Но так как жетоны обратно в мешок не возвращаются, то, вынув в первый раз букву “о”, мы уже не получим ее при третьем извлечении. Поэтому вероятность получить слово “око” равна нулю. Чтобы найти вероятность получения слова “ар”, заметим, что при двух извлечениях букв получаются всевозможные размещения без повторений из 33 букв по две, причем очевидно, что любые два таких размещения равновероятны. Так как общее число этих размещений равно (А33)2 =33 . 32=1056 , то вероятность сложить слово “ар” равна 1/1056.
Этот пример показывает, что при решении многих задач теории вероятностей оказываются полезными формулы комбинаторики — при определенных условиях у нас с равной вероятностью получаются размещения с повторениями (если, например, жетоны извлекаются и потом возвращаются обратно), размещения без повторений (если жетоны не возвращаются обратно), перестановки с повторениями и без повторений, сочетания и т. д. Долгое время комбинаторику вообще рассматривали как вспомогательную дисциплину для теории вероятностей, но теперь она приобрела самостоятельное значение.
Сложные вероятности. Теоремы сложения .Непосредственный подсчёт случаев, благоприятствующих данному событию, может оказаться затруднительным. Поэтому для определения вероятности события бывает выгодно представить данное событие в виде комбинации некоторых других, более простых событий. Приведём теоремы, с помощью которых можно по вероятностям одних случайных событий вычислять вероятности других случайных событий, каким – либо образом связанных с первыми. Начнём с теорем, которые образуют группу с общим названием “теоремы сложения”.
Теорема 1. Пусть А и В – два несовместных события. Тогда вероятность того, что осуществится хотя бы одно из этих двух событий, равна сумме их вероятностей: P(A U B)=P(A)+P(B).
Доказательство.
Обозначим исходы, благоприятные для события А, через а1,а2,…,аm , а для события В – через b1,b2,…,bn. Вероятности этих исходов обозначим соответственно через p1,p2,…,pm и q1,q2,…,qn . Тогда событию A U B благоприятны все исходы a1,a2,…,am , b1,b2,…,bn . В силу того что события А и В несовместны, среди этих исходов нет повторяющихся. Поэтому вероятность события АUB равна сумме вероятностей этих исходов. т.е.
P(AUB)=p1+p2+…+pm+q1+q2+…+qn.
Но p1+p2+pm=P(A), q1+q2+qn=P(B), а потому
P(AUB)=P(A)+P(B).
Теорема доказана.
Пример 1. Стрелок стреляет в мишень. Вероятность выбить 10 очков равна 0,3 , а вероятность выбить 9 очков равна 0,6. Чему равна вероятность выбить не менее 9 очков?
Рекомендуем скачать другие рефераты по теме: новые рефераты, реферат по истории на тему.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата