Обучаемая система поддержки коллективного решения группы независимых экспертов
| Категория реферата: Рефераты по менеджменту
| Теги реферата: океан реферат, бесплатные банки рефератов
| Добавил(а) на сайт: Vikul.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
(7)
где λ = P(V2)/P(V1) – отношение априорных вероятностей здоровых и больных пациентов.
В ситуации же S21, когда A1 признал Z здоровым, а A2 – больным, окончательный диагноз следует ставить согласно схеме:
(8)
Заметим, что для принятия коллективного решения по правилам (6) –(8) требуется весьма ограниченная априорная информация, которая может быть получена на основании предыдущего опыта. При этом совершенно не требуется знать, как именно эксперты принимают частные решения – используя формальный или эвристический алгоритм, либо просто полагаясь на свою интуицию.
В то же время мы сделали одно важное допущение о том, что решения экспертов независимы, которое, естественно, должно быть обоснованно. На практике достаточно веским обоснованием такого допущения может служить знания о том, что частные решения принимаются по статистически независимым данным.
Оценка вероятностных характеристик. Вполне понятно, что при решении практических задач точные значения вероятностных характеристик, фигурирующих в правилах (6)-(8), чаще всего неизвестны. Однако при достаточном объеме наблюдений вероятности P(Vk) и P(Ai / Vk) могут быть оценены соответствующими частотами:
(9)
(10)
где Gk – число появлений k-го класса (k = 1,…M) в выборке из G наблюдений, а Eki – число ошибочных решений i-го эксперта (i = 1,…, N) при анализе ситуаций, когда объект Z принадлежит k-му классу.
Рассмотрим схему оценки частот (9),(10), которая удобна для практического применения и может быть положена в основу системы поддержки принятия коллективного решения. Предположим, что для каждого из G наблюдений известна точная принадлежность Z к одному из возможных классов, выраженная в виде указаний “учителя” y[1], y[2], … , y[G], где y[n]. Запишем частоту появления k-го класса, оцененную согласно (9), в виде
(11)
где
Поскольку правую часть (11) можно выразить в виде суммы двух слагаемых
,
в первом из которых фигурирует оценка частоты появления k-го класса, вычисленная по G-1 наблюдениям, то после очевидных преобразований получим
. (12)
Для оценки вероятностей ошибок экспертов рассмотрим последовательность yk[1], yk[2], … , yk[Gk] указаний учителя, которые удовлетворяют условию yk[n] = k. Легко видно, что величина Eki , фигурирующая в правой части (11), может быть записана в виде суммы
,
где - штрафная функция, выраженная в форме
Тогда, оценка вероятности ошибки i-го эксперта при появлении k-го класса также может быть найдена по рекуррентной формуле
. (13)
Из выражений (12),(13) видно, что при неограниченном росте числа наблюдений величина поправки стремится к нулю, что, естественно, согласуется с предельной теоремой Бернулли [20] о сходимости по вероятности частоты случайного события к его вероятности.
Рекомендуем скачать другие рефераты по теме: сочинение татьяна, мировая торговля.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата