Образовательный портал Claw.ru
Всё для учебы, работы и отдыха
» Шпаргалки, рефераты, курсовые
» Сочинения и изложения
» Конспекты и лекции
» Энциклопедии

0,5 – 4

3. Рельеф поверхности Марса.

Во второй половине 60-х годов с пролетных аппаратов "Маринер-4,6,7" были получены первые фотоснимки нескольких сравнительно небольших районов поверхности в южном полушарии. Снимки, которых с таким нетерпением ждали, принесли разочарование. Отснятые районы изобиловали кратерами, в большинстве своем сильно разрушенными и чем-то напоминавшими лунные. Основываясь на этой весьма ограниченной информации, о Марсе стали говорить как о мертвой планете не только в биологическом, но и в геологическом смысле. Это сильно ослабило традиционный интерес к нему исследователей и широкой общественности, длительное время подогревавшийся такими экзотическими феноменами, как "сезонная смена растительного покрова", "каналы" и т.п. Однако дальнейшие исследования, особенно энергично развернутые после вывода на орбиты вокруг Марса первых искусственных спутников в 1971 году (советских "Марс-2" и "Марс-3" и американского "Маринер-9"), не просто "возродили", а значительно усилили былой интерес к этой планете.

Особенно эффективными оказались результаты глобального картирования Марса путем передачи телевизионных изображений и фотографирования его поверхности со спутников "Маринер-9", "Марс-5" и "Викинг-1,2". Изображения получены в основном с разрешением в 1 км, но отдельные участки исследованы при разрешении до 40-50 м, т.е. в 10 000 раз более высоком, чем при наблюдении с Земли. Это дало возможность увидеть, что же представляют собой наблюдаемые в телескоп на диске Марса темные и светлые области, понять, с чем связаны периодические изменения их очертаний и контрастов, сколь реальны границы других слабых, едва различимых пятен, как выглядят полярные шапки. Последовательные съемки одних и тех же районов за период, превышающий марсианский год, позволили проследить динамику сезонных колебаний и влияние атмосферных процессов на морфологию марсианской поверхности.

Изучению структуры и рельефа поверхности во многом способствовали также одновременные измерения в других диапазонах длин волн - инфракрасном, ультрафиолетовом, сантиметровом.

Что же на самом деле представляет собой поверхность Марса? Прежде всего оказалось, что уже отмечавшееся различие в расположении средних уровней поверхности северного и южного полушарий из-за несимметричности фигуры довольно отчетливо проявляется и в морфологии рельефа: в северном полушарии преобладают равнинные области, в южном - кратерированные. Выделяются крупные, поперечником свыше 2000 км, котловины ("моря"), такие как Эллада, Аргир, Амазония, Хрис, и возвышенные плато ("материки") - Фарсида, Элизиум, Тавмасия и др. Последние по своим размерам близки к земным континентам и возвышаются на 4-6 км над уровнем средней поверхности, который соответствует экваториальному радиусу планеты 3394 км. Если бы на Марсе существовали океаны, как на Земле, они бы заполнили обширные пространства котловин, а эти плато действительно выделились бы как материки.

Помимо обширных кратерированных районов, были обнаружены прямые свидетельства тектонической и вулканической деятельности в виде характерных вулканических конусов и разломов, сочетания относительно более молодых структур, довольно четкие следы воздействия различных эрозионных факторов и процессов осадконакопления.

Подавляющее большинство сосредоточенных преимущественно в средне- и высокоширотных районах южного полушария кратеров - ударного происхождения, с различной степенью стирания или разрушения за счет последующих геологических процессов. По степени облитерации, прежде всего по характеру разрушения кромок, или валов склонов, можно судить о возрасте кратера и об интенсивности процессов, приведших к сглаживанию. В целом кратеры на Марсе более мелкие, чем на Луне и Меркурии, но значительно глубже, чем на Венере. Внешние склоны валов типичных кратеров имеют углы наклона по отношению к горизонту около 10o, внутренние стенки наклонены на 20-25o. Как правило, дно кратеров плоское вследствие заполнения эродированным материалом.

Преобладающие формы рельефа северного полушария непосредственно связаны с активными геологическими процессами. В первую очередь внимание привлекают проявления вулканизма - громадные щитовые вулканы с четко очерченными кратерами на вершинах - кальдерами. Такие кратеры образуются при частичном обрушении вершины вулканического конуса, сопровождающем сильные извержения. Четыре вулкана в области Фарсида в несколько раз больше существующих на Земле.

Крупнейшие вулканические конусы называются горами Арсия, Акреус, Павонис и Олимп. Они достигают 500-600 км в основании, поднимаясь над окружающей равниной на 20-21 км. По отношению же к среднему уровню поверхности Марса высота Арсии и Акреуса 27 км, а Олимпа и Павониса - 26 км. Поражают воображение не только высота этих гор, но и диаметры кратеров на их вершинах: около 100 км у Арсии и 60 км у Олимпа. Гора Олимп - это хорошо известное астрономам наиболее светлое пятно, наблюдаемое на диске Марса в средних широтах, обозначавшееся на прежних картах как Никс Олимпика (Снега Олимпа). Само название говорит о том, что его считали возвышением; мало кто мог предполагать, что это возвышение столь грандиозно по своим размерам.

Отсутствие в областях Марса, где сосредоточены вулканы, кратеров ударного происхождения, а также хорошо сохранившиеся следы лавовых потоков на склонах гор позволяют предположить, что вулканы действовали еще сравнительно недавно (по оценкам не более нескольких сотен миллионов лет назад). Свидетельства широко развитого вулканизма на планете дают также хорошо сохранившиеся остатки лавовых потоков на панорамах, переданных с посадочного аппарата "Викинг-2". Место посадки на обширной марсианской равнине Утопия буквально усыпано многочисленными камнями, с характерными сколами и ноздреватыми поверхностями типа пемз. Подобные продукты раздробления пемзовых лав в виде обломочных рыхлых глыб часто встречаются на Земле.

Об интенсивной тектонической активности свидетельствуют многочисленные разломы и сбросы марсианской коры, образовавшиеся утесы, грабены, обширные ущелья с системой ветвящихся каньонов. Они достигают несколько километров в глубину, десятков километров в ширину, сотен и даже тысяч километров в длину. Сетки мощных каньонов зачастую отделены друг от друга плоскими плато или горами с плоскими вершинами и крутыми склонами, которые сложены наиболее прочными породами, противостоящими разрушению. Такие горы называют столовыми. Очевидно, эти образования, а также цепочки кратеров при наблюдении с Земли и создавали иллюзию марсианских "кратеров" - одной из наиболее известных и притягательных гипотез в истории астрономии конца XIX и первой половины XX столетий.

Вследствие наличия атмосферы и значительной эффективности эрозии на Марсе кратеры метеоритного происхождения сильно модифицированы. По этой же причине образовалось огромное количество пылепесчаного материала, что стало характерной чертой марсианской поверхности. Перемещение пыли ветром, обусловленное как локальными метеорологическими, так и глобальными циркуляционными процессами на планете, вызывает периодические изменения очертаний светлых и темных областей, причем темные области систематически на несколько Кельвинов теплее светлых. В относительно спокойные периоды тонкозернистый материал преимущественно скапливается в углублениях, а при сильных ветрах выдувается из них, образуя характерные светлые шлейфы у кромок кратеров, ориентированные в направлении ветра. Это преимущественная ориентировка может сохраняться в течение определенного времени и внутри кратеров, где преобладающими становятся более крупные частицы песка и пыли.

С переносом пыли и динамикой сезонных изменений полярных шапок связана и природа знаменитой "волны потемнения", распространяющейся с наступлением весны от широты примерно 70o к экватору со скоростью около 5 м/с, так что до экватора она докатывается меньше чем за два земных месяца, покрывая расстояние свыше 4000 км. К лету, когда шапка уменьшается до минимальных размеров, темная полоса достигает широты 40o в противоположном полушарии, а к осени, с началом роста шапки, быстро откатывается назад, и "моря" светлеют. В увлекательной теории Ловелла это объяснялось весенним пробуждением и быстрым распространением растительности вдоль живительных артерий - каналов, заполняемых водой с началом таяния шапки. Эта грандиозная ирригационная система высокоразвитых марсиан рассматривалась им как единственно мыслимое средство противостоять суровой природе на планете, преобладающими ландшафтами которой являются пустыни, а вода в условиях сухой и менее плотной, чем земная, атмосферы быстро испаряется.

Обилие и интенсивный перенос пыли объясняют и то, почему не было найдено сколько-нибудь определенной взаимосвязи неоднородностей рельефа с отражательными свойствами (альбедо) поверхности Марса, а также, почему для большинства районов планеты характерна малая плотность грунта. Альбедо поверхности претерпевает значительные изменения, и многие черты рельефа попросту маскируются. Иногда возникают мощные пылевые вихри, неслучайно называемые "пылевыми дьяволами". Ситуация приобретает глобальный характер в период пылевых бурь - грандиозного природного явления, периодически охватывающего всю планету. Пыль во время бурь поднимается на высоту до 10 и более километров, так что выступающими над этой сплошной пеленой оказываются только вершины крупнейших вулканов, а вся остальная поверхность приобретает ровный желтый фон, без каких-либо деталей.

4. Реки и ледники на Марсе.

Бомбардировка метеоритами, глобальная тектоника, широко развитый вулканизм и ветровая эрозия - не единственные активные процессы, формировавшие поверхность Марса. На фотоснимках, переданных космическими аппаратами, обнаруживаются длинные ветвящиеся долины протяженностью в сотни километров, по своей морфологии напоминающие высохшие русла земных рек, выглаженные ложбины и другие характерные конфигурации, свидетельствующие также о водной и ледниковой эрозии. Это приводит к предположению, что в некоторый период марсианской истории поверхность планеты бороздили потоки воды, образовавшие русла с развитой системой притоков, и перемещались ледники. Они образовали в областях ледникового сноса, при обтекании кратеров, каплевидные острова и другие формы разрушения горных пород и выпахивания поверхности. Например, на рис.4 отчетливо видны следы мощного выглаживания, вероятнее всего вызванного ледниками, но, возможно, определенную роль здесь сыграла и вода, при течении которой образовались протоки между локальными уплотнениями материала поверхности. Наибольшие уплотнения, однако, связаны с кратерами ударного происхождения, поперечники которых на рис.4 достигают 10-15 км.

О водном происхождении сохранившихся многочисленных русел, общее число которых оценивается в несколько десятков тысяч, говорит и факт перепада высот в направлении течения древних рек от истока к устью. Часть этих русел протянулась между углублениями на кратерированных участках поверхности, по-видимому, служивших местными водными резервуарами.

Насколько древними являются речные русла, корытообразные долины, оставленные ледниками, и некоторые другие образования, явно свидетельствующие о присутствии воды на поверхности Марса? К какому периоду (или периодам) марсианской истории относятся эти события? Данная проблема, как и проблема общих запасов воды на Марсе, непосредственно связана с палеоклиматом планеты, химическим составом и эволюцией ее атмосферы. Четкость многих сохранившихся флювиогляциальных форм, отсутствие следов их захоронения позднейшими наслоениями указывают на относительно недавнее происхождение, в пределах последнего миллиарда лет. По конфигурации некоторых желобов на склонах возвышенностей можно даже предполагать, что с них когда-то стекали дождевые потоки - ситуация, совершенно невозможная в современных условиях на Марсе при ничтожном содержании в атмосфере водяного пара и очень низком атмосферном давлении у поверхности, при котором вода в жидком виде практически не удерживается, быстро испаряясь.

Исходя из общих геохимических закономерностей о высвобождении воды из планетных недр, подкрепленных теперь явно выраженными признаками вулканической деятельности на всех планетах земной группы, многие исследователи уже давно высказали идею о том, что основные водные массы на Марсе сосредоточены в приповерхностном слое вечной мерзлоты, особенно в слоях наносов и в крупных равнинных бассейнах типа Эллады. Не исключалась даже возможность того, что за счет обычного геотермического температурного градиента внутри этих бассейнов под слоем льда температура может оказаться достаточной для сохранения воды в жидком состоянии. Такое предположение было высказано советскими учеными А.И.Лебединским и В.Д.Давыдовым.

В пользу представлений о существовании на Марсе обширных районов вечной мерзлоты действительно свидетельствует ряд деталей. К ним, в частности, относятся специфические долины с обнажением на их склонах внутренних пустот типа карстовых на Земле. Весьма вероятно, что они образовались при первоначальном обнажении и последующей сублимации ледяных прослоев (линз) и что подобных резервуаров, покрытых сыпучим грунтом, сохранилось на Марсе довольно много. Примерно аналогичную природу могут иметь встречающиеся на планете территории с хаотическим рельефом, содержащие замысловато изломанные блоки горных пород. Они, вероятнее всего, образовались за счет проседания наружных слоев вследствие ухода подповерхностного материала. О районах вечной мерзлоты свидетельствуют также специфические формы выбросов на внешних склонах некоторых кратеров, напоминающие снежные лавины. Происхождение таких конфигураций, не имеющих аналогов на других планетах, можно объяснить плавлением подповерхностного льда при ударе метеорита и стеканием грязевых потоков по склонам образовавшегося кратера.

Обширные области вечной мерзлоты на Марсе дают основание предположить наличие на его поверхности изверженных пород типа палагонитов - стекловатого минерала желто-бурого (или темно-бурого) цвета, встречающегося на Земле в базальтах, диабазах и туфах преимущественно в полярных районах. Палагониты образуются при взаимодействии магмы с водой или при извержении ее сквозь ледовую толщу. Они богаты железом и обеднены кремнием, что как раз подтверждается анализом элементного состава пород на поверхности Марса. Вместе с тем из-за меньшего атмосферного давления марсианские палагониты могут отличаться от земных меньшим содержанием летучих элементов и менее прочной структурой.

При определенных условиях, когда за счет падения метеорита, вулканического извержения или другого местного геотермального источника происходит таяние льда, на поверхности Марса могли бы образовываться (или вскрываться) водные резервуары.

Эту проблему исследовали известный американский планетолог К.Саган вместе с Д.Уоллесом. Их расчеты показали, что испарение очень быстро практически прекращается за счет появления на жидкой поверхности ледяного покрова, достигающего толщины не менее метра. Чем меньше давление атмосферы, тем интенсивнее испарение и тем сильнее охлаждение поверхности за счет высвобождения скрытой теплоты испарения, а значит, толще образующийся слой льда. В конечном итоге толщина ледяного покрова в среднем должна составлять 10-30 метров, что соответствует условиям равновесия между его ростом и сублимацией. Как известно, лед является хорошим теплоизоляционным материалом, и одновременно он достаточно прозрачен для солнечных лучей, которые частично проникают сквозь него и поглощаются в самой водной толще. Вместе с высвобождающейся скрытой теплотой плавления на нижней поверхности льда это препятствует дальнейшему промерзанию резервуара, обеспечивая сохранение в нем жидкой воды.

Все это привело авторов к интересной гипотезе о существовании на Марсе не только обширных водоемов (озер) под слоем вечной мерзлоты, но и о продолжающемся поныне течении рек, скованных ледяным щитом только с поверхности. А если это действительно так, то естественно предположить, что формирование по крайней мере некоторых из наблюдаемых русел происходило непрерывно. Можно было бы возразить, что большинство замерзших рек, вероятно, покрыто песчаными наносами и что в этом случае резко уменьшается как скорость сублимации, так и количество проникающего внутрь тепла, а значит, условие равновесия смещается. Действительно, в таких местах ледяной покров, вероятно, толще, однако вследствие регулярного переноса пыли условия могут изменяться.

Противоположный эффект должен наблюдаться при увеличении инсоляции, приводящей к уменьшению толщины ледяного покрова. На определенных участках поверхности, где промерзание было полным, возможно появление под слоем льда жидкой воды, так что этот слой по существу становится айсбергом. Такая ситуация могла бы, в частности, возникать в приполярных областях вследствие периодического изменения наклона оси вращения Марса относительно плоскости эклиптики. При таянии южной полярной шапки, которая в современную эпоху стаивает почти целиком вследствие заметного эксцентриситета орбиты планеты, обнаруживаются слои, образованные осадочными породами. В этих концентрических наслоениях вокруг полюса различается несколько сот слоев толщиной от единиц до десятков метров, имеющих вид террас. Такие структуры можно объяснить деятельностью ледников полярной шапки при изменении наклона оси планеты, от которого сильно зависит интенсивность их таяния. Предполагается, что последовательные процессы отложения осадков при таянии ледников с образованием "водяных подушек" и айсбергов, частично сглаживавших при своем перемещении неровности рельефа, происходили с периодом в сотни тысяч лет.

Белые полярные шапки Марса - одна из наиболее примечательных черт на диске планеты, хорошо наблюдаемых в телескоп. Аналогичным образом выделялись бы полярные области Земли при наблюдении, например с Марса, особенно - далеко простирающиеся к средним широтам обширные заснеженные пространства северного полушария зимой. Однако до недавнего времени велись споры о том, из чего состоят марсианские шапки - из обычного, водяного льда или твердой углекислоты. Последнее предположение связано с тем, что на полюсах отмечается самая низкая температура поверхности Марса, 148K=-125oC. А это как раз соответствует температуре замерзания углекислоты, из которой преимущественно состоит марсианская атмосфера. Измерения с космических аппаратов показали, что в общем-то правы были защитники как той, так и другой гипотезы, однако в основной своей массе полярные шапки образованы обычным льдом. Оказалось, что интенсивный рост шапок происходит в период с начала марсианской осени до начала весны в соответствующем полушарии за счет конденсации из атмосферы углекислоты. При этом образуется слой сухого льда толщиной в несколько сантиметров, быстро исчезающий с наступлением весны. После этого остается нестаивающая за лето часть, имеющая температуру около -70oC(203K), то есть значительно превышающую температуру замерзания углекислоты. Она-то и состоит в основном из обычного льда, покрываемого, как и прилегающая поверхность, слоем углекислоты в зимнее время. Весьма вероятно, что шапки содержат также обширные включения газовых гидратов - так называемых клатратов, представляющих собой соединения, которые образуются при внедрении молекул углекислого газа (или других газов) в пустоты кристаллической структуры водяного льда. По внешнему виду они напоминают спрессованный снег и хорошо известны прежде всего как побочный продукт при добыче природного газа. На Марсе клатраты, возможно, образуются и в средних широтах ночью, особенно внутри углублений и кратеров, как это было замечено на фотопанорамах "Викингов". С восходом Солнца конденсат быстро сублимирует. Измеренные температуры как раз хорошо соответствует фазовому переходу при образовании и исчезновении клатратов CO2. Тем не менее, окончательного отождествления пока не сделано, поэтому как эти, так и другие обширные белые образования на дне некоторых кратеров, обнаруживаемые на снимках с орбитальных аппаратов, получили пока условное название "белая порода".


Рекомендуем скачать другие рефераты по теме: реферат легкая атлетика, тарас бульба сочинение.


Категории:




Предыдущая страница реферата | 1  2  3  4 |


Поделитесь этой записью или добавьте в закладки

   



Рефераты от А до Я


Полезные заметки

  •