Методы теоретической популяционной генетики
| Категория реферата: Рефераты по науке и технике
| Теги реферата: шпаргалки для студентов, новшество
| Добавил(а) на сайт: Бобров.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
d/dt = 2 S i Pi ( Wi - )2. (5)
Таким образом, средняя приспособленность – неубывающая величина. В соответствии с (4), (5), величина L = Wmax - есть функция Ляпунова для рассматриваемой динамической системы (Wmax – локальный или глобальный максимум приспособленности, в окрестности которого рассматривается динамика популяции) [3]. Это означает, что величина L всегда уменьшается до тех пор, пока не будет достигнуто равновесное состояние (dPi /dt = 0).
Уравнение (5) характеризует фундаментальную теорему естественного отбора (Р.Фишер,1930), которая в нашем случае может быть сформулирована следующим образом [3]:
"В достаточно большой панмиктической популяции, наследование в которой определяется одним n-аллельным геном, а давление отбора, задаваемое Wij , постоянно, средняя приспособленность популяции возрастает, достигая стационарного значения в одном из состояний генетического равновесия. Скорость изменения средней приспособленности пропорциональна аддитивной генной дисперсии и обращается в нуль при достижении генетического равновесия."
Описанная модель – простой пример модели, использующей детерминистический подход. В рамках этого подхода был разработан широкий спектр аналогичных моделей, которые описывают различные особенности динамики генных распределений, например, учитывают несколько генных локусов, возраст особей, число мужских и женских особей, пространственную миграцию особей, подразделение популяции на субпопуляции и т.п. Многие из моделей и расчетов были предназначены для интерпретации конкретных генетических экспериментальных данных [1,3,4] .
2.2. Стохастические модели
Детерминистические модели позволяют эффективно описывать динамику распределения генов в эволюционирующих популяциях. Однако эти модели основаны на предположении бесконечного размера популяции, которое является слишком сильным для многих реальных случаев. Чтобы преодолеть это ограничение, были разработаны вероятностные методы теоретической популяционной генетики [1,3,4,6-8]. Эти методы включают анализ с помощью цепей Маркова (в частности, метод производящих функций) [4,7], и диффузионные [1,3,4,6,8] методы.
Ниже мы кратко рассмотрим основные уравнения и характерные примеры применения диффузионного метода. Этот метод достаточно нетривиален и его применение приводит к достаточно содержательным результатам.
2.2.1. Прямое и обратное уравнения Колмогорова
Рассмотрим популяцию диплоидных организмов с двумя аллелями A1 и A2 в некотором локусе. Численность популяции n предполагается конечной, но достаточно большой, так что частоты гена могут быть описаны непрерывными величинами. Мы также предполагаем, что численность популяции n постоянна.
Введем функцию j = j (X,t|P,0) , которая характеризует плотность вероятности того, что частота гена A1 равна X в момент времени t при условии, что начальная частота (в момент t = 0) была равна P. В предположении малого изменения частот генов за одно поколение, динамика популяции может быть описана приближенно следующими дифференциальными уравнениями в частных производных [1,3,4,8]:
¶ j /¶ t = - ¶ (Md X j )/¶ X + (1/2)¶ 2(VdX j )/¶ X 2 , (6)
¶ j/¶ t = Md P ¶ j /¶ P + (1/2)Vd P ¶ 2j/¶ P 2 , (7)
где Md X , Md P и VdX , Vd P – средние значения и дисперсии изменения частот X, P за одно поколение, соответственно; единица времени равна длительности одного поколения. Уравнение (6) есть прямое уравнение Колмогорова. (В физике это уравнение называют уравнением Фоккера-Планка), уравнение (7) – обратное уравнение Колмогорова.
Первые слагаемые справа в уравнениях (6), (7) описывают давление отбора, которое обусловлено разностью приспособленностей генов A1 и A2. Вторые слагаемые характеризуют случайный дрейф частот, который обусловлен флуктуациями в популяции конечной численности.
Используя уравнение (6), можно определять динамику частот генов во времени. Уравнение (7) позволяет оценивать вероятности фиксации генов.
Предполагая, что 1) приспособленности генов A1 и A2 равны 1 и 1 - s , соответственно и 2) вклады генов в приспособленности генных пар A1 A1, A1 A2 и A2 A2 аддитивны, можно получить, что величины Md X , Md P и VdX , Vd P определяются следующими выражениями [1,3,4,8]:
Md X = sX(1-X), Md P = sP(1-P), Vd X = X(1-X)/(2n), Vd P = P(1-P)/(2n) . (8)
2.2.2. Случай чисто нейтральной эволюции
Если эволюция чисто нейтральная (s = 0), то уравнение (6) принимает вид:
¶ j/¶ t = (1/4n)¶ 2[X(1-X)j]/¶ X 2 . (9)
Это уравнение было решено аналитически М. Кимурой [1,6]. Само решение имеет сложный вид, основные результаты этого решения сводятся к следующему: 1) в конечной популяции фиксируется только один ген (A1 либо A2); 2) типичное время перехода от начального распределения к конечному составляет величину порядка 2n поколений. Отметим, что этот результат согласуется с оценками лекции 4 , где была рассмотрена несколько иная модель "чисто нейтральной" эволюции.
2.2.3. Вероятность фиксации гена
Используя уравнение (7), мы можем оценить вероятность фиксации гена A1 в конечной популяции. Действительно, рассматривая асимптотику при времени, стремящемся к бесконечности ( t --> inf ), мы можем положить ¶ j /¶ t = 0 и X = 1 ; тогда аппроксимируя вероятность u(P) , которую нужно найти, величиной u(P) = j (1, inf |P,0)/(2n) (здесь u(P) = j(1, inf |P,0)DX , где DX = 1/2n – минимальный шаг изменения частоты в популяции, см. также [3] для более строгого рассмотрения) и комбинируя (7), (8), мы получаем:
s du /dP + (1/4n) d 2u /dP 2 = 0 . (10)
Рекомендуем скачать другие рефераты по теме: изложение по русскому языку, шпоры на пятках.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата