O Л. В. Канторовиче и линейном программировании
| Категория реферата: Рефераты по науке и технике
| Теги реферата: экзамен, сочинение
| Добавил(а) на сайт: Седых.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Дело в том, что отказавшись после окончания университета по некоторым причинам от аспирантуры, я работал в военно-морском ВЦ, и заинтересовался задачей многомерного наилучшего приближения как прикладник. Одной из моих задач в этом ВЦ было представление таблиц стрельбы в ЭВМ, и я предложил аппроксимировать их вместо того, чтобы хранить в памяти ЭВМ. Я сформулировал некоторое обобщение задачи о наилучшем приближении, а именно, о кусочно полиномиальном наилучшем приближении (ни о каких сплайнах тогда нам известно не было) для функций нескольких переменных. Позже, когда я уже стал работать в университете, в 60-х гг. этой задачей занимались мои первые дипломанты. Еще позже была написана подробная статья об этом.
Постепенно мой интерес к задаче о наилучшей аппроксимации превратился в интерес к самому методу, позволяющему ее решить, - одним из них и был метод линейного программирования. Г.П.Акилов посоветовал поговорить по этому поводу с Г.Ш.Рубинштейном. Во время наших бесед Г.Ш. дополнял доклады Л.В. рассказами о близких работах других математиков, - несомненно, Г.Ш. был тогда одним из лучших знатоков линейного программирования и всего этого круга идей Л.В. -- о работах американцев (симплекс-методе) мы узнали несколько позже. Основным для нас был "метод разрешающих множителей". Он укладывался как частный случай в то, что у нас называлось симплекс-методом, но наше понимание было шире американского, -- классический симплекс-метод Данцига есть также частный случай этого, более общего, класса методов. К сожалению, как часто бывает, русская терминология не была достаточно продумана и зафиксирована и слова "симплекс-метод" допускают массу различных толкований.
Школа численных методов линейного программирования в СССР была исключительно сильной, и в этом безусловная заслуга Л.В. и двух его основных помощников первой поколения -- В.А.Залгаллера и Г.Ш.Рубинштейна, а позже И.В.Романовского и его группы, В.Л.Булавского, в Москве -- Д.Б.Юдина и Е.Г.Гольштейна и др. В последующем с развитием вычислительной и программистской техники численное решение любых задач разумной размерности стало доступным.
В) Метрика Канторовича.
Однажды весной 1957 г. Г.Ш.Рубинштейн рассказал мне, что он наконец понял, как можно использовать теорему Л.В. о задаче Монжа (теперь ее называют задачей Монжа - Канторовича), доказанную им в заметке ДАН 1942 г. - а именно, как метрику Канторовича, т.е. оптимальное значение целевого функционала в транспортной задаче, использовать для введения нормы в пространстве мер и как критерий Л.В. становится теоремой двойственности с пространством функций Липшица. По сути дела, это было важным методическим замечанием, так как сама метрика уже была описана в заметке Л.В. Но именно эта работа Л.В. и Г.Ш., появившаяся в Вестнике ЛГУ в 1958 г., в выпуске, посвященном Г.М.Фихтенгольцу, содержала общую теорию знаменитой теперь метрики, назывемой иногда метрикой Канторовича-Рубинштейна, или транспортной.
Кстати, в том же номере была опубликована и моя первая работа совместно с моим первым руководителем Г.П.Акиловым, посвященная новому определению распределений Шварца, но в которой также в качестве одного из примеров рассматривалась эта, только что появившаяся, метрика. В той же работе Л.В. и Г.Ш.-- это обычно вспоминается реже, - был дан критерий оптимальности первозок в двойственных терминах -- функций Липшица или потенциалов.
С тех пор я превратился в постоянного пропагандиста этой замечательной метрики, и убедил очень многих математиков наших и зарубежных, в приоритете Л.В. и в важности этой работы. Она переоткрывалась огромное число раз и потому имеет очень много названий (метрика Вассерштейна, Орнштейна и т.д., не знавших о работе Л.В.) а сам метод ее введения известен как спаривание (coupling), как метода фиксированных маргинальных мер и т.д. Ее применения обширны и в самой математике, и в статфизике, и в математической статистике, в эргодической теории и в других приложениях. О ней написаны книги, которые далеко не исчерпывают всех ее сторон. Весьма близки к ней метрика Леви - Прохорова - Скорохода, популярная в теории вероятностей. Возможность дальнейшего обобщения этой метрики для широкого круга задач оптимизации была понята несколько позже, этому посвящены одна моя работа в "Успехах" 1970 г. и ее развитие в статье с М.М.Рубиновым.
Одновременно я применил эту метрику в 1970 для одной из важных задач теории меры и эргодческой теории (в теории убывающих последовтельностей измеримых разбиений). Там понадобилась дикая на первый взгляд беконечная итерация этой метрики ("башня мер"). Приблизительно в то же время Д.Орнштейн переоткрыл и ввел ее в эргодичскую теорию по другому поводу (метрика Орнштейна).
История этой метрики и всего, что относится к ней -- прекрасный пример того, как прикладная (в данном случае -- транспортная) задача инициирует введение исключительно полезного чисто математического понятия.
Г) Связи с вариационным исчисленим и множителями Лагранжа.
Линейное и выпуклое программирование естественно обобщало теорию множителей Лагранжа на нерегулярные задачи (задачи на многогранных областях или, как бы мы сказали сейчас, на многообразиях с углами). То, что разрешающие множители были обобщением множителей Лагранжа, Л.В. отмечал с самого начала. Неклассические множители появлялись и в других областях, в первую очередь в теории оптимального управления в школе Понтрягина. Эта теория также обобщала условные вариационные задачи на случай нерегулярных ограничений, и потому ее следует сравнивать с задачами (вообще говоря, невыпуклого, но в существенных случаях - выпуклого) бесконечномерного программирования. Эта связь прояснилась не сразу.
Нужно сказать, что в эстетическом отношении теория Понтрягина уступала теории Л.В., хотя первая по сути более сложна (только из-за изначальной бесконечномерности задач). О связи линейного и выпуклого программирования с оптимальным управлением писалось немало. Однако по ряду причин эта связь не была доведена до достаточно глубокого уровня.
В первую очередь это связано с недостаточно инвариантной формой, в которой рассматриваются обычно задачи оптимального управления. Промежуточное положение между классическим вариационным исчислением и оптимальным управлением, ближе к геометрии и теории алгебр Ли, занимают неголономные задачи. В них также наличествует неклассичность ограничений, как в выпуклом программировании и оптимальном управлении, но неклассичность другого (гладкого) типа.
Я занялся ими в середине 60-х годов, когда стал обдумывать популярные тогда работы по инвариантным формулировкам механики (Арнольд, Годбийон, Марсден и др.). Увидев в неголономной механике -- падчерице классической механики -- нетривиальную оптимизационную задачу, я понял, как ее поставить в современной форме. В те годы у нас был молодежный образовательный семинар в ЛОМИ -- по дифференциальной геометрии, теории представлений, группам Ли и всему остальному (Л.Д.Фаддеев, Б.Б.Венков, я и др.).
Как-то раз случайно выяснилось, что и Л.Д. тоже обдумывал неголономную механику, и мы решили вместе разобраться во всем полностью. Мы написали сначала краткую, в ДАН, а потом и большую статью об инвариантной форме лагранжевой и, в частности, неголономной механики. Эти работы обильно цитируются до сих пор, в них дан словарь соответствия между терминами дифференциальной геометрии и понятиями классической механики. Сейчас эта тематика стала модной, она является замечательным промежуточным звеном между классическим и неклассическим вариационным исчислением. В нем множители Лагранжа предстают в еще одной новой форме - как переменные, отвечающие ограничениям и следствиям (скобкам Ли) всех порядков. Здесь также невозможно не вспомнить о разрешающих множителях Л.В.
Д) Линейные модели и марковские процессы.
Поскольку Л.В. много занимался в 60-х гг. экономическими моделями, не обязательно связанными с оптимизацией, нельзя хотя бы мельком не упомянуть связи теории моделей экономической динамики (Дж. фон Нейман, В.Леонтьев, Л.В. и др.) с динамическими системами. Я хочу подчеркнуть здесь только одну недостаточно изученную связь, а именно, что эти линейные экономические модели напрямую связаны с особым типом марковских процессов, в которых особую роль играет понятие положительности в множестве состояний. Теоремы магистрального типа и марковские процессы принятия решений самым непосредственным образом связаны с этой проблематикой. Сюда же относятся теории многозначных отображений, проблемы непрерывного выбора и т.д.
По-видимому, эти вопросы сейчас теряют свое прикладное значение, но несомненно интересны с математической точки зрения, как и всякие теории многозначных и положительных отображений. Напомним, что еще до войны Л.В. создал теорию полуупорядоченных пространств (К-пространств), которая вскоре замкнулась в себе и перестала интересовать и его, и тех, кто не занимался ею непосредственно. Но полупорядоченность в более широком смысле всегда была предметом особого интереса математиков ленинградской и украинской школ.
Е) Глобализация линейного программирования.
Привлечение идей из топологии и дифференциальной геометрии привели и к другому синтезу - понятию полей многогранников, конусов и т.п., играющих важную роль в оптимальном управлении, Парето-оптимуме (гипотеза Смейла и работы Вана и Вершика-Чернякова) и др. Имеются в виду задачи с гладким параметром, пробегающим многообразие, в каждой точке которого есть задача линейного программирования. Поля многогранников, или поля задач, возникают и в теории гладких динамических систем.
Еще одна тема, близкая по средствам, но с иной целью -- оценка среднего числа шагов в различных вариантах симплекс-метода (Смейл, Вершик - Спорышев и др.) -- здесь использовались идеи интегральной геометрии ("грассманов подход"). Эти оценки были еще одним подтверждением практичности симплекс-метода и метода разрешающих множителей.
Сильное впечатление произвели в 80-х гг. работы Хачияна и Кармаркара, дававшие полиномиальную (в некотором смысле) равномерную (по классу задач) оценку сложности метода эллипсоидов для решения задач линейного программирования. Тем не менее, этот метод ни в каком отношении не заменил различные варианты симплекс-метода. Оценки, о которых шла речь выше, дают линейную или квадратичную оценку сложности лишь статистически. В целом проблема о полиномиальности л.п. в подлинном смысле слова до сих пор (2001) еще не решена.
Ж) Линейное программирование и методы вычислений.
Еще одно направление, начатое Л.В. и не получившее должного развития, -- линейное программирование как метод приближенного решения задач математической физики (двусторонние оценки линейных функционалов от решений). Работа на эту тему (1962) содержала очень плодотворную идею, и несколько работ на эту тему было выполнено в ЛГУ. Подход Л.В. можно рассматривать также как альтернативный подход к некорректным задачам. Эта задача очень актульна в математической геофизике и обсуждалась Л.В. с Кейлис-Бороком.
3. Л.В. и подготовка кадров.
Одна из важных инициатив Л.В. того периода - начало подготовки кадров математиков-экономистов. Ряд дипломантов и учеников по этой теме у Л.В. были еще в 50-х, но в сравнении с другими многочисленными его занятиями и темами учеников в этой области было немного. Всерьез подготовка началась в 1959 году, когда был организован так называемый шестой курс на экономическим факультете ЛГУ для окончивших факультет, где слушатели знакомились с математической экономикой и идеями Л.В. Шестой курс кончали известные в дальнейшем экономисты - А.А.Анчишкин, С.С.Шаталин, И.М.Сыроежин и др. Этот курс (он существовал один год) стал центром математической переподготовки экономистов в то время.
Нелишне напомнить, что большинство видных экономистов 70-90-х гг. так или иначе прошли школу Л.В. или общались с ним. Из наиболее близких ему упомяну лишь имена А.Г.Аганбегяна и В.Л.Макарова. Вскоре в 1959 г. на экономическом факультете была организована кафедра экономической кибернетики. Очень активную роль на первом этапе в организации специализации играл В.В.Новожилов - давний соратник Л.В. по экономическим баталиям с консерваторами и автор своих интереснейших экономических концепций. Из математиков участие в организации и преподавании в первые годы приниали В.А.Залгаллер, несколько позже Л.М.Абрамов и др., и политэкономы: будущий первый заведующий кафедрой И.В.Котов и тогдашний декан экономического факультета В.А.Воротилов, а также заведующий лабораторией И.М.Сыроежин и др.
Нужно сказать, что математическое "вторжение" на экономический факультет имело далеко идущие последствия не только для экономической кибернетики (так была названа новая кафедра), но и вообще для этого факультета. Математика заняла прочное место на этом факультете и математическое образование стало сравнительно неплохим, математические курсы читались в основном преподавателями мат-меха на том же уровне, что и на мат-мехе. Наезды Л.В. из Новосибирска в Ленинград были хотя и не очень частыми, но очень плодотворными: наиболее важные решения о новой специальности принимались в известной степени от его имени.
Несколько позже (уже после отъезда Л.В. в Новосибирск, но при его участии) это же было сделано и на мат-мехе - сначала специальность "исследование операций" была создана в недрах вычислительной кафедры мат-меха (с 1961-62 гг), а позже (с 1970) организована кафедра исследования опреаций. В ее становлении на факультете основную роль играли М.К.Гавурин и И.В.Романовский, который с 60-х гг. вел свой оптимизационный семинар с уклоном в вычислительные аспекты.
Экономическая кибернетика быстро нашла свою нишу. Необходимость математизации и обновления обветшалой (это, конечно, не признавалось официально) экономической науки, изучения функционирования и оптимизации экономических структур совершенно естественно требовали подготовки специалистов нового типа. Этим и должны были заняться новые кафедры экономических факультетов.
В то же время, как ни странно, место этой специализации в самой математике вызывало определенные сложности. На мат-мехе ЛГУ новая специализация начала создаваться уже в отсутствие Л.В. - после его переезда в Новосибирск - и она была одной их первых в стране (почти одновременно с Новосибирским университетом). Сложности состояли в том, что, при всей важности экономико-математических моделей и методов, нельзя сказать, что они образовывали новую область теоретической математики.
Рекомендуем скачать другие рефераты по теме: зимой сочинение, 5 баллов рефераты.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата