Титан
| Категория реферата: Рефераты по науке и технике
| Теги реферата: сочинение на тему зимой, вред реферат
| Добавил(а) на сайт: Ярчиковский.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
Двуокись титана с помощью хлора (в присутствии углерода) переводят в четырёххлористый титан:
TiO2+C+2Cl2=TiCl4+CO2
Процесс идёт на трудоёмкость и энергоёмкость производство титана, оно уже сейчас становится одной из важнейших отраслей металлургии. Если в 1947 г. в США было получено всего 2 т этого металла, то через 15 лет – более 350 тыс. т. А в 1975 г. потребление титана в слитках составило в США более 12 млн. т.
Кажется, ещё недавно титан называли редким металлом – сечас он важнейший конструкционный материал. Объясняется это только одним: редким в шахтных электропечах при 800 – 1250 С. Другой вариант – хлорирование в расплаве солей щелочных металлов NaCl и KCl.
Следующая операция (в одинаковой мере важная и трудоёмкая) – очистка TiCl4 от примесей – проводится разными способами и веществами. Четырёххлористый титан в обычных условиях представляет собой жидкость с температурой кипения 136 С.
Разорвать связь титана с хлором легче, чем с кислородом. Это можно сделать с помощью магния по реакции:
TiCl4+2Mg = Ti+2MgCl2.
Эта реакция идёт в стальных реакторах при 900 С. В результате образуется так называемая титановая губка, магнием и хлоридом магния. Их испаряют в герметичном вакуумном аппарате при 950 С, а титановую губку затем спекают или переплавляют в компактный металл.
Натриетермический метод получения металлического титана в принципе мало чем отличается от магниетермического. Эти два метода наиболее широко применяются в промышленности.
Для получения более чистого титана и поныне используется иодидный метод, предложенный ван Аркелем и де Буром. Металлотермический губчатый титан превращают в иодид TiI4, который затем возгоняют в вакууме. На своём пути пары иодида титана встречают раскалённую до 1400 С титановую проволоку. При этом иодид разлагается, и на проволоке нарастает слой чистого титана. Этот метод производства титана малопроизводителен и дорог, поэтому в промышленности он применяется крайне ограниченно.
Несмотря сочетанием полезных свойств элемента №22. И, естественно, потребностями техники.
ТИТАН РАБОТАЕТ
Роль титана как конструкционного материала, основы высокопрочных сплавов для авиации, судостроения и ракетной техники, быстро возрастает. Именно в сплавы идёт большая часть выплавляемого в мире титана. Широко известен сплав для авиационной промышленности, состоящий из 90% титана, 6% алюминия и 4% ванадия. В 1976 г. в американской печати появились сообщения о новом сплаве того же назначения: 85% титана, 10% ванадия, 3% алюминия и 2% железа. Утверждают, что этот сплав не только лучше, но и экономичнее.
А вообще в титановые сплавы входят очень многие элементы, вплоть до платины и палладия. Последние (в количестве 0,1 – 0,2%) повышают и без того высокую химическую стойкость титановых сплавов.
Прочность титана повышают и такие «легирующие добавки», как азот и кислород. Но вместе с прочностью они повышают твёрдость и, главное, хрупкость титана, поэтому их содержание строжайшие регламентируются: в сплав допускаются не более 0.15% кислорода и 0,05% азота.
Несмотря что титан дорог, замена им более дешёвых материалов во многих случаях оказывается экономически выгодной. Вот характерный пример. Корпус химического аппарата, изготовленный из нержавеющей стали, стоит 150 рублей, а из титанового сплава – 600 рублей. Но при этом стальной реактор служит лишь 6 месяцев, а титановый – 10 лет. Прибавьте затраты на замену стальных реакторов, вынужденные простои оборудования – и станет очевидно, что применять дорогостоящий титан бывает выгоднее, чем сталь.
Значительные количества титана использует металлургия. Существуют сотни марок сталей и других сплавов, в состав которых титан входит как легирующая добавка. Его вводят для улучшения структуры металлов, увеличения прочности и коррозийной стойкости.
Некоторые ядерные реакции должны совершаться в почти абсолютной пустоте. Ртутными насосами разрежение может быть доведено до нескольких миллиардных долей атмосферы. Но этого не достаточно, а ртутные насосы на большее не способны. Дальнейшая откачка воздуха осуществляется уже особыми титановыми насосами. Кроме того, для достижения ещё большего разрежения по внутренней поверхности камеры, где протекают реакции, распыляют мелкодисперсный титан.
Титан часто называют металлом будущего. Факты, которыми уже сейчас располагают наука и техника, убеждают, что это не совсем так – титан уже стал металлом настоящего.
ВСЕ ПОЗНАЁТСЯ В СРАВНЕНИИ…
Лишь три технически важных металла – алюминий, железо и магний – распространены в природе больше, чем титан. Количество титана в земной коре в несколько раз превышает запасы меди, цинка, свинца золота, серебра, платины, хрома, вольфрама, ртути, молибдена, висмута, сурьмы, никеля и олова, вместе взятых.
МИНЕРАЛЫ ТИТАНА.
Известно около 70 минералов титана, в которых он находится в виде двуокиси и солей титановой кислоты. Наибольшее практическое значение имеют ильменит, рутил, перовскит и сфен.
Ильменит – метатитанат железа FeTiO3 - содержит 52,65% TiO2. Название этого минерала связано с тем, что он был найден на Урале в Ильменских горах. Крупнейшие россыпи ильменитовых песков имеются в Индии. Другой важнейший материал – рутил представляет собой двуокись титана. Промышленное значение имеют также титаномагнетиты – природная смесь ильменита с минералами железа. Богатые месторождения титановых руд есть в России, США, Индии Норвегии, Канаде, Австралии и других странах.
Рекомендуем скачать другие рефераты по теме: реферат мировой, болезни реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата