Верификация физической нереализуемости гравитационных сингулярностей
| Категория реферата: Рефераты по науке и технике
| Теги реферата: диплом, решебник 11
| Добавил(а) на сайт: Характеров.
1 2 3 | Следующая страница реферата
Верификация физической нереализуемости гравитационных сингулярностей
Павло ДАНЫЛЬЧЕНКО
Рассмотрено совместное решение уравнений ОТО и термодинамики для идеальной жидкости, обладающей топологией полого тела. Найдены пространственные распределения основных термодинамических и гравитермодинамических её параметров и характеристик. Показано принятие на сингулярной поверхности принципиально недостижимых ими значений, что подтверждает физическую нереализуемость гравитационной сингулярности. Определен фотометрический радиус срединной сингулярной поверхности, отделяющей антивещество от вещества.
Наличие математических сингулярностей в решениях уравнений гравитационного поля общей теории относительности (ОТО) рассматривалось Эйнштейном [1] и позже наиболее авторитетными специалистами в этой области физики (Иваненко [2], Мёллер [3, 4], Хокинг [5]) как наиболее очевидная трудность этой теории. В связи с установлением Хокингом и Пенроузом, как математической неизбежности сингулярностей в ОТО [6, 7], так и возможности конформной трактовки бесконечностей [8, 9], а также из-за принципиальной невозможности эмпирической проверки (непосредственной верификации) реализуемости как космологической, так и гравитационных сингулярностей на передний план вышли философские аспекты решения проблемы сингулярностей. Стало вполне очевидным то, что установление истины в этом вопросе возможно лишь с помощью гносеологического подхода [10], базирующегося на косвенной верификации физической нереализуемости сингулярностей [11, 12].
Физическая нереализуемость (фиктивность) математических сингулярностей в решениях уравнений гравитационного поля ОТО основывается на принципиальной недостижимости для термодинамических характеристик вещества (абсолютной температуры, давления и др.), как нулевых, так и бесконечно больших значений. Эта недостижимость не только следует из философского анализа физической сущности характеристик вещества, но и непосредственно верифицируется в физических экспериментах.
Фиктивность сингулярностей в ОТО может быть обусловлена следующими факторами:
псевдореализуемостью космологических сингулярностей лишь в бесконечно далеких космологическом прошлом или же будущем по метрически однородной шкале космологического времени (в космологии сейчас фактически используется экспоненциальная шкала космологического времени, являющаяся не строго, а лишь «практически» равномерной на данном этапе эволюции Вселенной) [11, 13];
локализацией сингулярностей за пределами пространственно-временных областей существования (физической реализации) решений уравнений ОТО, в связи с соответствием их, как правило, лишь конкретным и при том не первичным невырожденным фазовым состояниям вещества во Вселенной;
соответствием сингулярных решений уравнений ОТО лишь предельно псевдореализуемым вырожденным состояниям вещества;
игнорированием в решениях уравнений ОТО эволюционной изменчивости свойств физического вакуума и вещества и, в том числе, непрерывного остывания последнего (убывания его энтропии) а, следовательно, игнорированием и принципиальной не жесткости
систем отсчета пространственных координат и времени (СО) остывающего вещества [13, 14];
игнорированием, как неравновесности, так и фрактальности фазовых состояний эволюционно остывающего вещества;
игнорированием «размытия» сингулярностей квантовыми эффектами.
В отличие от проблемы космологической сингулярности (Большого Взрыва Вселенной), легко разрешимой в теории эволюционного расширения Вселенной отнесением горизонта событий (псевдогоризонта видимости [11, 13]) в бесконечно далекое космологическое прошлое [10...12], проблема гравитационных сингулярностей не имеет столь тривиального решения.
Ввиду наличия калибровочного для мира людей [15] эволюционного процесса самосжатия вещества в фундаментальном пространстве физического вакуума (происходящего на уровне элементарных частиц вещества [10...13]) имеющие место в СО вещества псевдогоризонты видимости также являются горизонтами событий, удаленными в бесконечно далекое космологическое прошлое или же будущее. Из-за релятивистского эффекта несоблюдения одновременности в СО эволюционно самосжимающегося вещества событий, являющихся одновременными в космологическом времени фундаментальной СО физического вакуума, сингулярность внутреннего шварцшильдова решения уравнений гравитационного поля (так называемая сфера Шварцшильда) является псевдогоризонтом будущего [16]. События «происходящие» на этой сингулярной поверхности в любой момент собственного времени самосжимающегося вещества, на самом деле могут «произойти» лишь в бесконечно далеком космологическом будущем. Однако это не устраняет полностью проблему наличия гравитационных сингулярностей. Ведь гравитационные сингулярности имеют место и в решениях уравнений гравитационного поля, находимых непосредственно в СО неувлекаемого самосжимающимся веществом физического вакуума. В этой фундаментальной СО теоретически возможно существование замкнутой сингулярной поверхности, отделяющей содержащуюся в ней часть фундаментального пространства от остального фундаментального пространства.
Целью настоящей работы является дальнейшее философское осмысление физической сущности гравитационных сингулярностей, имеющих место во внутренних решениях уравнений гравитационного поля, и косвенная верификация их физической нереализуемости.
Уравнения гравитационного поля ОТО
Рассмотрим внутреннее решение Шварцшильда для однородной идеальной жидкости, находящейся в состоянии теплового равновесия и, поэтому, обладающей жесткой собственной СО. Как в этой сопутствующей жидкости СО, так и в несопутствующей жидкости фундаментальной СО, в которой по гипотезе Вейля [17, 18] галактики расширяющейся Вселенной квазинеподвижны, линейный элемент имеет сферически симметричную форму [11, 19, 20], задаваемую следующими параметрами и функциями. Единое для всей жидкости координатное (астрономическое [11, 13]) время t и метрически однородное (dτ = dt при dr = 0) по отношению к нему космологическое время τ отсчитываются соответственно в сопутствующей жидкости СО и в СО Вейля (фундаментальной СО физического вакуума). Собственное значение радиальной координаты r (R, τ) определяется в СО Вейля по собственному эталону длины в каждой конкретной ее мировой точке, задаваемой мировой радиальной координатой R и моментом космологического времени τ. Оно является тождественным фотометрическому радиусу в собственной СО жидкости центросимметричной сферической поверхности. Значение этого радиуса определяется через площадь S сферической поверхности (r2 = S/4π) и в непустом пространстве с кривизной может изменяться немонотонно вдоль метрического радиального отрезка rметр. Функции a(r) = (∂rметр/∂r)2 и b(r) = vc2/c2, которые характеризуют соответственно кривизну и физическую неоднородность [11, 13] собственного пространства жидкости, связаны с собственными значениями плотности массы μ(r) и давления p(r) дифференциальными уравнениями гравитационного поля ОТО [19].
Функция N(R, τ) = r / R = exp[H(τ – τk)] определяет различие фундаментальных размеров термодинамически идентичных пробных тел в разных точках евклидового фундаментального пространства СО Вейля и, поэтому, характеризует масштабную (метрическую) неоднородность этого пространства для вещества. Среднестатистическое относительное значение частоты взаимодействия элементарных частиц молекул жидкости f (R, τ) = NVc / c определяет различие темпов протекания идентичных физических процессов в разных точках пространства СО Вейля и, поэтому, аналогично функции b(r), характеризует физическую неоднородность для жидкости фундаментального пространства СО Вейля. Функции r(R, τ), N(R, τ) и f (R, τ) определяются из уравнений гравитационного поля ОТО в СО Вейля и связаны между собой и с функциями a(r) и b(r) зависимостями [11, 20], определяемыми через хабблово значение радиальной скорости движения молекул жидкости в СО Вейля V = –Rc(λ/3)1/2 = –HR и гравибарические несобственные (координатные [19]) значения скорости света в собственной СО жидкости vc и в СО Вейля Vc. В этих зависимостях: c – постоянная скорости света; λ = 3H2/c2 – космологическая постоянная; H – постоянная Хаббла; τk – момент космологического времени, в который радиальное расстояние в СО Вейля откалибровано по вещественному эталону длины (Rk = r; Nk = 1).
Уравнения термодинамики
Согласно уравнениям гравитационного поля ОТО [19] в равновесном состоянии жидкости приращения гравитермодинамической энтальпии Hg = Hb1/2 [21], вызванные приращениями функции b(r) и собственного значения давления p взаимно скомпенсированы и, следовательно, как гравитермодинамическая энтальпия Hg(S), так и гравитермодинамическая псевдотемпература [21] являются функциями только лишь от энтропии S. Здесь: H = (μc2 + p)v – классическая энтальпия; v – молярный объем жидкости.
Как показал Толмен [22], необходимым условием поддержания теплового равновесия в идеальной жидкости, подверженной действию гравитации, является одинаковость во всем ее объеме вместо термодинамической температуры T гравитермодинамической температуры Tg(S) = Tb1/2. Исходя из этого, как энтропия, так и гравитермодинамическая энтальпия также являются одинаковыми во всем объеме T жидкости (S = const(r); Hg = const(r)). Это обеспечивает возможность выполнения в общем случае указанной взаимной компенсации и при зависимости гравибарического несобственного значения скорости света vc = cb1/2 не только от давления, но и от энтропии S жидкости. Поэтому в пределах всей однородной жидкости все ее термодинамические потенциалы могут быть представлены, как функции лишь от энтропии и гравибарического несобственного значения скорости света, а само это несобственное значение скорости света может рассматриваться в классической термодинамике как альтернативный давлению внутренний термодинамический интенсивный параметр жидкости.
Будем рассматривать жидкость, подверженную только всестороннему давлению, как идеальную лишь при отсутствии электромагнитного взаимодействия между ее молекулами а, следовательно, и при отсутствии у нее вязкости. Чтобы собственная СО такой жидкости была абсолютно жесткой должны отсутствовать радиационные потери энергии этой жидкости и, следовательно, она должна быть предельно остывшей. Ввиду отсутствия ван-дер-ваальсовых сил взаимодействия молекулы жидкости принципиально могут оторваться от ее внешней поверхности и образовать над ней газовое облако и при этом сама резкая граница между жидкостью и газом может размыться и исчезнуть. Чтобы это не произошло кванты энергии теплового движения молекул жидкости не должны превышать величины работы, необходимой для преодоления сил тяготения. И, следовательно, степень свободы радиального теплового движения молекул идеальной жидкости должна быть «замороженной». А это значит, что энергия теплового движения одноатомных молекул предельно остывшей жидкости должна быть равнораспределенной лишь между двумя степенями свободы, а сами тепловые колебания этих молекул должны совершаться лишь в направлениях, перпендикулярных градиентам потенциала гравитационного поля (векторам сил тяготения).
Гравитермодинамическая энтальпия такой идеальной жидкости, у которой теплоемкость Cv = R, и которая наиболее всего соответствует нейтронной жидкости, может быть задана, как в ковариантной форме через ее энтальпию H = 2RT = U + pv, так и в контравариантной форме через ее антиэнтальпию H* = U – pv [21, 23]:
Hg(S) = Hvc/c = H*v2cv/vcc = (vcv/c)(U2 – p2v2)1/2.
Здесь: vcv = c(bv)1/2 = vce(σe/σe*)1/2 = const(r) – вакуумное несобственное значение скорости света, одинаковое в пределах всего объема однородной жидкости во всех условно созданных в ней бесконечно малых вакуумных полостях и, поэтому, являющееся единым для всей жидкости ее калибровочным параметром; vc = c(b)1/2 = vcv(σ*/σ)1/2 и vce – гравибарическое несобственное значение скорости света соответственно в произвольной точке жидкости и на ее граничной поверхности; U = μc2v – молярное значение внутренней энергии жидкости; σ = μc2 + p и σ* = μc2 – p = const(r, S) – соответственно плотность энтальпии и одинаковая во всем объеме плотность антиэнтальпии жидкости; R – молярная газовая постоянная.
Гравитермодинамическая энтальпия в каждом слое жидкости эквивалентна энергии расширенной термодинамической системы [21, 24], включающей и энергию сжимающих этот слой жидкости верхних ее слоев. Ее абсолютное значение в СО Вейля Hτg является таким же, как и ее значение Hg в сопутствующей жидкости СО. А ее значение, нормированное по вакуумному несобственному значению скорости света vcv, может рассматриваться как энергия, определяемая во внутреннем термодинамическом времени жидкости, по которому скорость протекания физических процессов в жидкости не зависит от ее интенсивных параметров.
Совместное решение уравнений ОТО и термодинамики
Ввиду одинаковости энтропии во всем объеме идеальной жидкости все ее параметры и характеристики в каждой ее точке можно выразить через один любой интенсивный параметр жидкости и через соответствующие параметры и характеристики ее поверхностного слоя, которые, в свою очередь, могут быть выражены через энтропию и минимально возможное собственное значение молярного объема не подвергнутой сжатию жидкости [23].
Подставив в уравнения гравитационного поля для идеальной жидкости найденные зависимости от функции b плотности массы μ(b) и давления p(b), получим систему двух дифференциальных уравнений первого порядка: y′/y = Ar3/z2 и z′ = y(1 – Br2), сводящуюся к нелинейному дифференциальному уравнению второго порядка [23]. Здесь: y = (ab)1/2, z = r(b/a)1/2, A(re) = κσebe/2, B = λ+κσ*/2 = const(re, S), κ – гравитационная постоянная Эйнштейна.
Рекомендуем скачать другие рефераты по теме: александр реферат, оформление реферата.
Категории:
1 2 3 | Следующая страница реферата